Optimality conditions for multiple objective fractional subset programming with (Γ, ρ, σ, θ )-V-type-I and related non-convex functions

In this paper, we introduce a new class of generalized convex n-set functions, called (, @r,@s,@q)-V-Type-I and related non-convex functions, and then establish a number of parametric and semi-parametric sufficient optimality conditions for the primal problem under the aforesaid assumptions. This work partially extends an earlier work of [G.J. Zalmai, Efficiency conditions and duality models for multiobjective fractional subset programming problems with generalized (, @a, @r, @q)-V-convex functions, Comput. Math. Appl. 43 (2002) 1489-1520] to a wider class of functions.

[1]  G. J. Zaimai Optimality conditions and duality for constrained measurable subset selection problems with minmax objective functions , 1989 .

[2]  B. Craven Invex functions and constrained local minima , 1981, Bulletin of the Australian Mathematical Society.

[3]  Wei-Shen Hsia,et al.  On multiple objective programming problems with set functions , 1985 .

[4]  Kin Keung Lai,et al.  Optimality and duality for a nonsmooth multiobjective optimization involving generalized type I functions , 2008, Math. Methods Oper. Res..

[5]  M. A. Hanson,et al.  Optimality criteria in mathematical programming involving generalized invexity , 1988 .

[6]  G. J. Zalmai A transposition theorem with applications to constrained optimal control problems , 1989 .

[7]  Gue Myung Lee,et al.  Optimality and Duality for Multiobjective Fractional Programming Involvingn-Set Functions , 1998 .

[8]  Vasile Preda,et al.  Optimality and Wolfe Duality for Multiobjective Programming Problems Involving n-set Functions , 2001 .

[9]  Lai-Jiu Lin,et al.  On the optimality conditions of vector-valued n-set functions☆ , 1991 .

[10]  G. J. Zalmai Efficiency conditions and duality models for multiobjective fractional subset programming problems with generalized (ϝ, α, ϱ, θ)-V-convex functions , 2002 .

[11]  J. Rosenmüller,et al.  Extreme convex set functions with finite carrier: General theory , 1974, Discret. Math..

[12]  Y. Ye,et al.  D-Invexity and optimality conditions , 1991 .

[13]  M. A. Hanson,et al.  Necessary and sufficient conditions in constrained optimization , 1987, Math. Program..

[14]  H. W. Corley,et al.  Optimization Theory for n-Set Functions , 1987 .

[15]  Vasile Preda,et al.  On Duality of Multiobjective Fractional Measurable Subset Selection Problems , 1995 .

[16]  J. C. Liu,et al.  Optimality and duality for multiobjective programming involving subdifferentiable set functions , 1997 .

[17]  Rita Pini,et al.  A survey of recent[1985-1995]advances in generalized convexity with applications to duality theory and optimality conditions , 1997 .

[18]  Werner Dinkelbach On Nonlinear Fractional Programming , 1967 .

[19]  M. A. Hanson On sufficiency of the Kuhn-Tucker conditions , 1981 .

[20]  Gue Myung Lee,et al.  Duality for multiobjective programming involving n-set functions , 1994 .

[21]  Gue Myung Lee,et al.  Duality for multiobjective fractional programming involving n-set functions sup * , 1994 .

[22]  Vaithilingam Jeyakumar,et al.  On generalised convex mathematical programming , 1992, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[23]  Lai-Jiu Lin,et al.  On the optimality of differentiable nonconvex n-set functions☆ , 1992 .

[24]  V. Preda,et al.  Oil minmax programming problems containing n-set functions , 1991 .

[25]  Wei-Shen Hsia,et al.  Lagrangian function and duality theory in multiobjective programming with set functions , 1988 .

[26]  M. A. Hanson,et al.  Multiobjective Programming under Generalized Type I Invexity , 2001 .

[27]  Lai-Jiu Lin,et al.  Optimality of differentiable, vector-valued n-set functions☆ , 1990 .

[28]  G. J. Zalmai,et al.  Sufficiency criteria and duality for nonlinear programs involving n-set functions , 1990 .

[29]  Lai-Jiu Lin Duality theorems of vector-valued n-set functions , 1991 .

[30]  Hang-Chin Lai,et al.  Minimax Fractional Programming for n-Set Functions and Mixed-Type Duality under Generalized Invexity , 2008 .

[31]  Wei-Shen Hsia,et al.  ProperD-solutions of multiobjective programming problems with set functions , 1987 .

[32]  G. J. Zalmai Semiparametric Sufficient Efficiency Conditions and Duality Models for Multiobjective Fractional Subset Programming Problems with Generalized (Ф, ρ, θ)-Convex Functions , 2002 .

[33]  Robert J. T. Morris,et al.  Optimal constrained selection of a measurable subset , 1979 .

[34]  M. A. Hanson,et al.  Further Generalizations of Convexity in Mathematical Programming , 1982 .

[35]  C. R. Bector,et al.  Duality for Multiobjective Fractional Programming Involving n-Set Functions , 1994 .

[36]  Tan-Yu Lee,et al.  Lagrange multiplier theorem of multiobjective programming problems with set functions , 1991 .

[37]  Jean-Paul Penot,et al.  Generalized Convexity and Generalized Monotonicity , 2001 .

[38]  Shashi Kant Mishra On Multiple-Objective Optimization with Generalized Univexity , 1998 .

[39]  Lai-Jiu Lin,et al.  Optimality for set functions with values in ordered vector spaces , 1989 .