On the Robustness and Sparsity Trade-Off in Mean-Variance Portfolio Selection

A well-managed portfolio is crucial to an investor’s success. Robustness against parameter uncertainty and low trading costs are two desired properties when constructing a portfolio. Robust optimization techniques have been applied to improve the stability of a portfolio under parameter uncertainty. However, portfolios generated from robust procedures often suffer from being over-diversified. Hence, an investor has to hold a multitude of assets and pay a large amount of transaction costs. In this paper, we extend the classical mean-variance framework by incorporating an ellipsoidal uncertainty set and fixed transaction costs which penalize an over-diversified portfolio and promote sparsity. We explore several properties of the optimal portfolio under this model. In particular, we show that it can be approximated by a linear combination of three benchmark portfolios, including the mean-variance portfolio, the minimum-variance portfolio, and a fixed transaction cost induced portfolio. Moreover, we explicitly characterize how the number of traded assets changes by a sensitivity analysis. Our analytical results could help investors to maintain an appropriate trade-off between robustness and sparsity and thus lead to a quantitative interpretation of the so-called diversification paradox.

[1]  N. Patel,et al.  A Simple Algorithm for Optimal Portfolio Selection with Fixed Transaction Costs , 1982 .

[2]  Philippe Jorion Bayes-Stein Estimation for Portfolio Analysis , 1986, Journal of Financial and Quantitative Analysis.

[3]  A. R. Norman,et al.  Portfolio Selection with Transaction Costs , 1990, Math. Oper. Res..

[4]  M. Best,et al.  On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results , 1991 .

[5]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[6]  Daniel Bienstock,et al.  Computational Study of a Family of Mixed-Integer Quadratic Programming Problems , 1995, IPCO.

[7]  Stephen P. Boyd,et al.  The worst-case risk of a portfolio , 2000 .

[8]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[9]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[10]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[11]  Reha H. Tütüncü,et al.  Robust Asset Allocation , 2004, Ann. Oper. Res..

[12]  Lorenzo Garlappi,et al.  Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach , 2004 .

[13]  Jaroslava Hlouskova,et al.  An Algorithm for Portfolio Optimization with Transaction Costs , 2005, Manag. Sci..

[14]  J. Vu Beyond Markowitz: A Comprehensive Wealth Allocation Framework for Individual Investors , 2005 .

[15]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[16]  Robert A. Stubbs,et al.  Incorporating estimation errors into portfolio selection: Robust portfolio construction , 2006 .

[17]  F. Fabozzi Robust Portfolio Optimization and Management , 2007 .

[18]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[19]  Stephen P. Boyd,et al.  Portfolio optimization with linear and fixed transaction costs , 2007, Ann. Oper. Res..

[20]  B. Scherer Can robust portfolio optimisation help to build better portfolios? , 2007 .

[21]  Melvyn Sim,et al.  Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization , 2008, Manag. Sci..

[22]  Shucheng Liu,et al.  Lagrangian relaxation procedure for cardinality-constrained portfolio optimization , 2008, Optim. Methods Softw..

[23]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[24]  Miguel A. Lejeune,et al.  An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints , 2009, Oper. Res..

[25]  Garleanu Nicolae,et al.  Dynamic Trading with Predictable Returns and Transaction Costs , 2009 .

[26]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[27]  Dimitris Bertsimas,et al.  Algorithm for cardinality-constrained quadratic optimization , 2009, Comput. Optim. Appl..

[28]  Guofu Zhou,et al.  Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies ☆ , 2011 .

[29]  Tan Wang,et al.  Keynes Meets Markowitz: The Tradeoff between Familiarity and Diversification , 2009, Manag. Sci..

[30]  Y. Ye,et al.  Sparse Portfolio Selection via Quasi-Norm Regularization , 2013, 1312.6350.

[31]  Duan Li,et al.  Optimal Cardinality Constrained Portfolio Selection , 2013, Oper. Res..

[32]  Daniel Kuhn,et al.  Worst-Case Value at Risk of Nonlinear Portfolios , 2013, Manag. Sci..

[33]  Duan Li,et al.  Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach , 2014, INFORMS J. Comput..

[34]  F. Fabozzi,et al.  Deciphering robust portfolios , 2014 .

[35]  Jack Xin,et al.  Weighted Elastic Net Penalized Mean-Variance Portfolio Design and Computation , 2015, SIAM J. Financial Math..

[36]  Karl Schmedders,et al.  Optimal and Naive Diversification in Currency Markets , 2016, Manag. Sci..