Synthetic Biomimetic Membranes and Their Sensor Applications

Synthetic biomimetic membranes provide biological environments to membrane proteins. By exploiting the central roles of biological membranes, it is possible to devise biosensors, drug delivery systems, and nanocontainers using a biomimetic membrane system integrated with functional proteins. Biomimetic membranes can be created with synthetic lipids or block copolymers. These amphiphilic lipids and polymers self-assemble in an aqueous solution either into planar membranes or into vesicles. Using various techniques developed to date, both planar membranes and vesicles can provide versatile and robust platforms for a number of applications. In particular, biomimetic membranes with modified lipids or functional proteins are promising platforms for biosensors. We review recent technologies used to create synthetic biomimetic membranes and their engineered sensors applications.

[1]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[2]  Mathias Winterhalter,et al.  A nanocompartment system (Synthosome) designed for biotechnological applications. , 2006, Journal of biotechnology.

[3]  Donald K. Martin Nanobiotechnology of Biomimetic Membranes , 2007 .

[4]  Mathias Winterhalter,et al.  Reconstitution of Channel Proteins in (Polymerized) ABA Triblock Copolymer Membranes , 2000 .

[5]  Sang Jun Sim,et al.  A Direct, Multiplex Biosensor Platform for Pathogen Detection Based on Cross‐linked Polydiacetylene (PDA) Supramolecules , 2009 .

[6]  Richard B. Thompson,et al.  Reversible thermochromism in photopolymerized phosphatidylcholine vesicles , 1986 .

[7]  Srinivasa R. Raghavan,et al.  Biopolymer capsules bearing polydiacetylenic vesicles as colorimetric sensors of pH and temperature , 2011 .

[8]  Jwa-Min Nam,et al.  Electrofluidic lipid membrane biosensor. , 2012, Small.

[9]  Lisa Pakstis,et al.  Stimuli-responsive polypeptide vesicles by conformation-specific assembly , 2004, Nature materials.

[10]  Jinsang Kim,et al.  Polydiacetylene–Liposome Microarrays for Selective and Sensitive Mercury(II) Detection , 2009 .

[11]  E. Kretschmann Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen , 1971 .

[12]  Raz Jelinek,et al.  Cation-Selective Color Sensors Composed of Ionophore-Phospholipid-Polydiacetylene Mixed Vesicles , 2000 .

[13]  Mathias Winterhalter,et al.  Amphiphilic block copolymer nanocontainers as bioreactors , 2001 .

[14]  Carlo Montemagno,et al.  Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix , 2005, Nature materials.

[15]  Sujay Chattopadhyay,et al.  Polymer- and liposome-based nanoparticles in targeted drug delivery. , 2010, Frontiers in bioscience.

[16]  Deborah H. Charych,et al.  Color and Chromism of Polydiacetylene Vesicles , 1998 .

[17]  Mathias Winterhalter,et al.  Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles , 2000 .

[18]  Raz Jelinek,et al.  Biomolecular Sensing with Colorimetric Vesicles , 2007 .

[19]  Chuanbin Mao,et al.  Self-assembly of drug-loaded liposomes on genetically engineered target-recognizing M13 phage: a novel nanocarrier for targeted drug delivery. , 2009, Small.

[20]  F. Bates,et al.  Giant wormlike rubber micelles , 1999, Science.

[21]  Tae-Joon Jeon,et al.  Single molecule measurements of channel proteins incorporated into biomimetic polymer membranes , 2006 .

[22]  Mary Ann Augustin,et al.  Nano- and micro-structured assemblies for encapsulation of food ingredients. , 2009, Chemical Society reviews.

[23]  Simon Song,et al.  A thermoresponsive fluorogenic conjugated polymer for a temperature sensor in microfluidic devices. , 2009, Journal of the American Chemical Society.

[24]  Tae-Joon Jeon,et al.  Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Krysiński,et al.  Tethered Mono- and Bilayer Lipid Membranes on Au and Hg , 2001 .

[26]  Yoshio Okahata,et al.  A totally synthetic bilayer membrane , 1977 .

[27]  Mathias Winterhalter,et al.  Giant Free-Standing ABA Triblock Copolymer Membranes , 2000 .

[28]  Thomas Hirt,et al.  Polymerized ABA Triblock Copolymer Vesicles , 2000 .

[29]  Ivaylo Dimitrov,et al.  Controlled Synthesis of Peptide-Based Amphiphilic Copolymers , 2008 .

[30]  Daniel T Kamei,et al.  Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. , 2007, Nature materials.

[31]  Dong June Ahn,et al.  Colorimetric reversibility of polydiacetylene supramolecules having enhanced hydrogen-bonding under thermal and pH stimuli. , 2003, Journal of the American Chemical Society.

[32]  Emilie Allard,et al.  The encapsulation of DNA molecules within biomimetic lipid nanocapsules. , 2009, Biomaterials.

[33]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.

[34]  Tae-Joon Jeon,et al.  Hydrogel-encapsulated lipid membranes. , 2006, Journal of the American Chemical Society.

[35]  Frances H. Arnold,et al.  METAL-INDUCED DISPERSION OF LIPID AGGREGATES : A SIMPLE, SELECTIVE, AND SENSITIVE FLUORESCENT METAL ION SENSOR , 1995 .

[36]  Miriam V. Flores-Merino,et al.  Block copolymer nanostructures , 2008 .

[37]  Qi Wang,et al.  Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes. , 2009, The Journal of chemical physics.

[38]  Ingo Köper,et al.  Tethered lipid Bilayers on ultraflat gold surfaces , 2003 .

[39]  A. Graff,et al.  Virus-assisted loading of polymer nanocontainer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  P. Fahey,et al.  Lateral diffusion in planar lipid bilayers. , 1977, Science.

[41]  Claus Duschl,et al.  A new class of thiolipids for the attachment of lipid bilayers on gold surfaces , 1994 .

[42]  Claus Duschl,et al.  Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance , 1993 .

[43]  Sébastien Lecommandoux,et al.  Self-assembly of polypeptide-based block copolymer amphiphiles , 2009 .

[44]  Rigler,et al.  Functional immobilisation of the nicotinic acetylcholine receptor in tethered lipid membranes , 2000, Biophysical chemistry.

[45]  Deborah H. Charych,et al.  Reversible Color Switching and Unusual Solution Polymerization of Hydrazide-Modified Diacetylene Lipids , 1999 .

[46]  Simon Song,et al.  A Microfluidic Conjugated‐Polymer Sensor Chip , 2008 .

[47]  B. Lindemann Receptors and transduction in taste , 2001, Nature.

[48]  Carlo Montemagno,et al.  Artificial photosynthesis in ranaspumin-2 based foam. , 2010, Nano letters.

[49]  B. Cornell,et al.  A biosensor that uses ion-channel switches , 1997, Nature.

[50]  Aichi Chien,et al.  Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization , 2009, Nanotechnology.

[51]  E. Hall,et al.  Examination of bilayer lipid membranes for 'pin-hole' character. , 2004, The Analyst.

[52]  Jörg Braun,et al.  Synthetic polyion-counterion transport systems in polymersomes and gels. , 2011, Organic & biomolecular chemistry.

[53]  Francesco Stellacci,et al.  Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. , 2008, Nature materials.

[54]  Cornelia G Palivan,et al.  Can polymeric vesicles that confine enzymatic reactions act as simplified organelles? , 2011, FEBS Letters.

[55]  Yen Wah Tong,et al.  Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z. , 2012, Small.

[56]  Ibrahim Abdulhalim,et al.  Surface Plasmon Resonance for Biosensing: A Mini-Review , 2008 .

[57]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[58]  Wolfgang Meier,et al.  Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. , 2011, Accounts of chemical research.

[59]  Horst Vogel,et al.  Ion-Channel Gating in Transmembrane Receptor Proteins: Functional Activity in Tethered Lipid Membranes. , 1999, Angewandte Chemie.

[60]  Jack W. Szostak,et al.  Formation of Protocell-like Vesicles in a Thermal Diffusion Column , 2009, Journal of the American Chemical Society.

[61]  Tae-Joon Jeon,et al.  Microbead-assisted PDA sensor for the detection of genetically modified organisms , 2011, Analytical and bioanalytical chemistry.

[62]  Louis Tiefenauer,et al.  Nanopore Arrays for Stable and Functional Free‐Standing Lipid Bilayers , 2007 .

[63]  R. New,et al.  Liposomes : a practical approach , 1990 .

[64]  Kazufumi Hosoda,et al.  Quantitative study of the structure of multilamellar giant liposomes as a container of protein synthesis reaction. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[65]  Sébastien Lecommandoux,et al.  Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. , 2005, Journal of the American Chemical Society.

[66]  T. Jensen,et al.  A modified protocol for efficient DNA encapsulation into pegylated immunoliposomes (PILs). , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[67]  Richard J. Bushby,et al.  Electrically insulating pore-suspending membranes on highly ordered porous obtained from vesicle spreading. , 2008, Soft matter.

[68]  Lifeng Zhang,et al.  Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers , 1995, Science.

[69]  T. Yanagida,et al.  An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels. , 1999, Biochemical and biophysical research communications.

[70]  M. A. Gómez,et al.  Thermochromic phase transition of a polydiacetylene, poly(ETCD), studied by high-resolution solid-state carbon-13 NMR , 1989 .

[71]  David J. Walton,et al.  Improved gel-protected bilayers , 1999 .

[72]  R. Benz,et al.  Ion selectivity of gram-negative bacterial porins , 1985, Journal of bacteriology.

[73]  Eunju Kim,et al.  Direct synthesis of polymer nanocapsules: self-assembly of polymer hollow spheres through irreversible covalent bond formation. , 2010, Journal of the American Chemical Society.

[74]  Tae-Joon Jeon,et al.  Long‐Lived Planar Lipid Bilayer Membranes Anchored to an In Situ Polymerized Hydrogel , 2008 .

[75]  J. Santos-Sacchi,et al.  Motility voltage sensor of the outer hair cell resides within the lateral plasma membrane. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Bradford A Pindzola,et al.  Antibody-functionalized polydiacetylene coatings on nanoporous membranes for microorganism detection. , 2006, Chemical communications.

[77]  Man Bock Gu,et al.  Aptamers-in-liposomes for selective and multiplexed capture of small organic compounds. , 2011, Macromolecular rapid communications.

[78]  Mary B. Mahowald,et al.  Protocell Research and Its Implications , 2010, Perspectives in biology and medicine.

[79]  Paul B Bennett,et al.  Trends in ion channel drug discovery: advances in screening technologies. , 2003, Trends in biotechnology.

[80]  Jaewon Yoon,et al.  Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. , 2007, Journal of the American Chemical Society.

[81]  D. O. Rudin,et al.  Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System , 1962, Nature.

[82]  Tae-Joon Jeon,et al.  Automatable production of shippable bilayer chips by pin tool deposition for an ion channel measurement platform. , 2010, Biotechnology journal.

[83]  Yuzuru Ikehara,et al.  Development of a novel oligomannose-coated liposome-based anticancer drug-delivery system for intraperitoneal cancer. , 2007, Current opinion in molecular therapeutics.

[84]  Arunmozhiarasi Armugam,et al.  Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration , 2012 .

[85]  Wolfgang Meier,et al.  Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane proteins. , 2004, Macromolecular bioscience.

[86]  George H. Atkinson,et al.  Chromatic properties of polydiacetylene films , 1989 .

[87]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008, Sensors.

[88]  Tae-Joon Jeon,et al.  Storable droplet interface lipid bilayers for cell-free ion channel studies , 2011, Bioprocess and Biosystems Engineering.

[89]  C Jeffrey Brinker,et al.  Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. , 2009, Journal of the American Chemical Society.

[90]  Martin Andersson,et al.  Detection of single ion channel activity on a chip using tethered bilayer membranes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[91]  I. Hamley Nanostructure fabrication using block copolymers , 2003 .

[92]  Weihong Tan,et al.  A liposome-based nanostructure for aptamer directed delivery. , 2010, Chemical communications.

[93]  S. Jenekhe,et al.  Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes , 1998, Science.

[94]  M. L. Wagner,et al.  Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. , 2000, Biophysical journal.

[95]  M Montal,et al.  Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Sang Jun Sim,et al.  Aptamer biosensors for label-free colorimetric detection of human IgE based on polydiacetylene (PDA) supramolecules. , 2011, Journal of nanoscience and nanotechnology.