Minimised Geometric Buchberger Algorithm for Integer Programming
暂无分享,去创建一个
Qiang Li | John Darlington | Yike Guo | Tetsuo Ida | J. Darlington | T. Ida | Qiang Li | Yike Guo
[1] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[2] Bernd Sturmfels,et al. GRIN: An Implementation of Gröbner Bases for Integer Programming , 1995, IPCO.
[3] Rekha R. Thomas,et al. An algebraic geometry algorithm for scheduling in presence of setups and correlated demands , 1995, Math. Program..
[4] Rüdiger Gebauer,et al. On an Installation of Buchberger's Algorithm , 1988, J. Symb. Comput..
[5] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[6] Rekha R. Thomas. A Geometric Buchberger Algorithm for Integer Programming , 1995, Math. Oper. Res..
[7] André Heck,et al. Introduction to Maple , 1993 .
[8] Tetsuo Ida,et al. Modelling Integer Programming with Logic: Language and Implementation , 2000 .
[9] Carlo Traverso,et al. Buchberger Algorithm and Integer Programming , 1991, AAECC.
[10] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[11] Ralf Fröberg,et al. An introduction to Gröbner bases , 1997, Pure and applied mathematics.
[12] B. Buchberger,et al. Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .
[13] Rekha R. Thomas,et al. Truncated Gröbner Bases for Integer Programming , 1997, Applicable Algebra in Engineering, Communication and Computing.
[14] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988 .
[15] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.