Diagnostics of molecular plasmas and trace gas analysis using mid infrared lasers

Mid infrared (MIR) absorption spectroscopy between 3 and 20 μm, known as Infrared Laser Absorption Spectroscopy (IRLAS) and based on tuneable semiconductor lasers, namely lead salt diode lasers, often called tuneable diode lasers (TDL), and quantum cascade lasers (QCL) has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas and for trace gas analysis. The increasing interest in molecular processing plasmas has lead to further applications of IRLAS. IRLAS provides a means of determining the absolute concentrations and temperatures of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetics. Since plasmas with molecular feed gases are used in many applications such as thin film deposition and semiconductor processing this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of QCLs offers an attractive new option for the monitoring and control of industrial plasma processes as well as for highly time-resolved studies on the kinetics of plasma processes and for trace gas analysis. The aim of the present contribution is threefold: (i) to report on selected studies of the spectroscopic properties and kinetic behaviour of the methyl radical, (ii) to review recent achievements in our understanding of molecular phenomena in plasmas and the influence of surfaces, and (iii) to describe the current status of advanced instrumentation for quantum cascade laser absorption spectroscopy (QCLAS).

[1]  J. Röpcke,et al.  Kinetic and Diagnostic Studies of Molecular Plasmas Using Laser Absorption Techniques , 2007 .

[2]  Antoine Rousseau,et al.  Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review , 2006 .

[3]  N. Lang,et al.  In Situ Monitoring of Silicon Plasma Etching Using a Quantum Cascade Laser Arrangement , 2007 .

[4]  Steven S Brown,et al.  Absorption spectroscopy in high-finesse cavities for atmospheric studies. , 2003, Chemical reviews.

[5]  David I. Rosen,et al.  Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL , 2005 .

[6]  S. Dhali,et al.  Laser-induced fluorescence of OH radicals in a dielectric barrier discharge , 2000 .

[7]  J. Röpcke,et al.  Line strengths and transition dipole moment of the nu2 fundamental band of the methyl radical. , 2005, The Journal of chemical physics.

[8]  V. Pirronello,et al.  The formation of interstellar molecules via reactions on dust grain surfaces. , 2006, Faraday discussions.

[9]  J. Röpcke,et al.  Diagnostic studies of H2?Ar?N2 microwave plasmas containing methane or methanol using tunable infrared diode laser absorption spectroscopy , 2003 .

[10]  Rj René Severens,et al.  Plasma chemistry aspects of a-Si:H deposition using an expanding thermal plasma , 1998 .

[11]  M. Zahniser,et al.  TOBI: A two-laser beam infrared system for time-resolved plasma diagnostics of infrared active compounds , 2003 .

[12]  van de Sanden MC,et al.  Argon-hydrogen plasma jet investigated by active and passive spectroscopic means. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  R. Singer,et al.  Gas-phase characterization in diamond hot-filament CVD by infrared tunable diode laser absorption spectroscopy , 2006 .

[14]  K. Kawaguchi,et al.  Diode laser study of the ν2 band of the methyl radical , 1981 .

[15]  M. Zahniser,et al.  Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements , 2008 .

[16]  O. Matsumoto,et al.  Synergistic effects of catalysts and plasmas on the synthesis of ammonia and hydrazine , 1994, Plasma Chemistry and Plasma Processing.

[17]  Feuchtgruber,et al.  Detection of Interstellar CH3. , 2000, The Astrophysical journal.

[18]  P. Bernath,et al.  Difference frequency laser spectroscopy of the ν3 band of the CH3 radical , 1982 .

[19]  P. Botschwina,et al.  Spectroscopic properties of the methyl radical calculated from UHF SCEP wavefunctions , 1983 .

[20]  Hyun-Ha Kim,et al.  Nonthermal Plasma Processing for Air‐Pollution Control: A Historical Review, Current Issues, and Future Prospects , 2004 .

[21]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[22]  W. Knoll,et al.  Soft plasma treated surfaces: Tailoring of structure and properties for biomaterial applications , 2005 .

[23]  G. R. Harrison Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 µm) optical parametric oscillator , 2002 .

[24]  J. A. Smith,et al.  Application of a quantum cascade laser for time-resolved, in situ probing of CH4/H2 and C2H2/H2 gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond. , 2006, The journal of physical chemistry. A.

[25]  A. Ohl Fundamentals and limitations of large area planar microwave discharges using slotted waveguides , 1998 .

[26]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[27]  Van de Sanden,et al.  Plasma chemistry during the deposition of a-C:H films and its influence on film properties , 2003 .

[28]  J. Röpcke,et al.  Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers , 2008 .

[29]  Daniel Poitras,et al.  Plasma deposition of optical films and coatings: A review , 2000 .

[30]  M. Beck,et al.  Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation , 2002 .

[31]  Karl H. Schoenbach,et al.  Low temperature plasmas : fundamentals, technologies and techniques , 2008 .

[32]  B. Parvitte,et al.  Optimization of a compact photoacoustic quantum cascade laser spectrometer for atmospheric flux measurements: application to the detection of methane and nitrous oxide , 2007 .

[33]  James J. Scherer,et al.  CW integrated cavity output spectroscopy , 2001 .

[34]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[35]  K. Uehara,et al.  Carbonyl sulfide detection with a thermoelectrically cooled midinfrared quantum cascade laser. , 2003, Optics letters.

[36]  M. Zahniser,et al.  High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[37]  Rui Q. Yang,et al.  Continuous-wave operation of distributed feedback interband cascade lasers , 2004 .

[38]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[39]  Mattias Beck,et al.  Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature , 2001, Science.

[40]  Van de Sanden,et al.  Analysis of the expanding thermal argon?oxygen plasma gas phase , 2003 .

[41]  Jacek Borysow,et al.  Dynamics of OH (X2 Pi , v=0) in high-energy atmospheric pressure electrical pulsed discharge , 1995 .

[42]  Rui Q. Yang,et al.  High-temperature and low-threshold midinfrared interband cascade lasers , 2005 .

[43]  M. Karplus Interpretation of the Electron‐Spin Resonance Spectrum of the Methyl Radical , 1959 .

[44]  Rudy Peeters,et al.  Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy , 1998 .

[45]  J. Röpcke,et al.  Tunable Diode Laser Diagnostic Studies of H2-Ar-O2 Microwave Plasmas Containing Methane or Methanol , 1999 .

[46]  V. Herrero,et al.  Spectrometric and kinetic study of a modulated glow air discharge , 2004 .

[47]  G. Brussaard,et al.  Stripping of photoresist using a remote thermal Ar/O2 and Ar/N2/O2 plasma , 2003 .

[48]  Y. Shimomura ITER and plasma surface interaction issues in a fusion reactor , 2007 .

[49]  R. W. Fessenden Electron spin resonance spectra of some isotopically substituted hydrocarbon radicals , 1967 .

[50]  J. Röpcke,et al.  Quantitative detection of methyl radicals in non-equilibrium plasmas: a comparative study , 2004 .

[51]  S. Leone,et al.  Photofragment infrared emission spectroscopy: Vibrational progression and potential parameters of the CH3(ν2) ‘‘umbrella’’ mode , 1982 .

[52]  Daniele Romanini,et al.  Diode laser cavity ring down spectroscopy , 1997 .

[53]  A. Cho,et al.  Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy. , 2000, Applied optics.

[54]  M. Zahniser,et al.  IRMA: A tunable infrared multicomponent acquisition system for plasma diagnostics , 2000 .

[55]  D. E. Milligan,et al.  Infrared and Ultraviolet Spectroscopic Study of the Products of the Vacuum‐Ultraviolet Photolysis of Methane in Ar and N2 Matrices. The Infrared Spectrum of the Free Radical CH3 , 1967 .

[56]  T. Encrenaz,et al.  Detection of the Methyl Radical on Neptune , 1999 .

[57]  J. Nibler,et al.  High resolution study of the ν1 vibration of CH3 by coherent Raman photofragment spectroscopy , 1992 .

[58]  J. Röpcke,et al.  Molecule synthesis in an Ar–CH4–O2–N2 microwave plasma , 2006 .

[59]  Van de Sanden,et al.  The argon-hydrogen expanding plasma : model and experiments , 1995 .

[60]  Dc Daan Schram,et al.  Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature , 2008 .

[61]  Wolfgang Schade,et al.  Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives , 2006 .

[62]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[63]  A. Snelson INFRARED MATRIX ISOLATION SPECTRUM OF THE METHYL RADICAL PRODUCED BY PYROLYSIS OF METHYL IODIDE AND DIMETHYL MERCURY. , 1970 .

[64]  Marcella Giovannini,et al.  Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere. , 2006, Optics letters.

[65]  G. Cartry,et al.  Experimental study and modelling of a low-pressure N2-O2 time afterglow , 1999 .

[66]  Antoine Rousseau,et al.  Time-resolved study of a pulsed dc discharge using quantum cascade laser absorption spectroscopy: NO and gas temperature kinetics , 2007 .

[67]  Frank K. Tittel,et al.  Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region , 2005 .

[68]  Anthony O'Keefe,et al.  Integrated cavity output analysis of ultra-weak absorption , 1998 .

[69]  A. Rousseau,et al.  Evidence of plasma-catalyst synergy in a low-pressure discharge , 2006 .

[70]  Federico Capasso,et al.  Ultra-broadband semiconductor laser , 2002, Nature.

[71]  L. Fan,et al.  Reduction of Nitric Oxide from Combustion Flue Gas by Bituminous Coal Char in the Presence of Oxygen , 2003 .

[72]  Gerard Wysocki,et al.  QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 mum. , 2007, Optics express.

[73]  R. Weisman,et al.  Transient CARS spectroscopy of the ν1 band of methyl radical , 1984 .

[74]  J B McManus,et al.  Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. , 1995, Applied optics.

[75]  M. Zahniser,et al.  Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer , 2002 .

[76]  M. Šimek,et al.  The NO(A) excitation mechanism in a - pulsed RF discharge , 1997 .

[77]  E. Hirota,et al.  The transition dipole moment of the ν2 band of the methyl radical , 1983 .

[78]  Z. Falkenstein The influence of ultraviolet illumination on OH formation in dielectric barrier discharges of Ar/O2/H2O: The Joshi effect , 1997 .

[79]  F. Tittel,et al.  Recent advances of laser-spectroscopy-based techniques for applications in breath analysis , 2007, Journal of breath research.