The In-Plane Anisotropy of WTe2 Investigated by Angle-Dependent and Polarized Raman Spectroscopy

[1]  Fan Ye,et al.  Single- and few-layer WTe2 and their suspended nanostructures: Raman signatures and nanomechanical resonances. , 2016, Nanoscale.

[2]  A. R. T. Nugraha,et al.  Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. , 2016, Nano letters.

[3]  L. Dai,et al.  Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe 2 , 2016, 1602.05692.

[4]  T. Korn,et al.  Back Cover: Observation of anisotropic interlayer Raman modes in few-layer ReS2(Phys. Status Solidi RRL 2/2016) , 2016 .

[5]  Young In Jhon,et al.  Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2. , 2016, Nanoscale.

[6]  J. Hone,et al.  Linearly Polarized Excitons in Single- and Few-Layer ReS2 Crystals , 2016 .

[7]  Tao Chen,et al.  Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. , 2015, Nanoscale.

[8]  F. Miao,et al.  High Responsivity Phototransistors Based on Few‐Layer ReS2 for Weak Signal Detection , 2015, 1512.06515.

[9]  S. Berciaud,et al.  Splitting of Interlayer Shear Modes and Photon Energy Dependent Anisotropic Raman Response in N-Layer ReSe₂ and ReS₂. , 2015, ACS nano.

[10]  Z. Yin,et al.  Coupling and Stacking Order of ReS2 Atomic Layers Revealed by Ultralow-Frequency Raman Spectroscopy. , 2015, Nano letters.

[11]  T. Korn,et al.  Observation of anisotropic interlayer Raman modes in few‐layer ReS2 , 2015, 1511.02645.

[12]  Chongwu Zhou,et al.  Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus. , 2015, ACS nano.

[13]  A. Krasheninnikov,et al.  Single-Layer ReS₂: Two-Dimensional Semiconductor with Tunable In-Plane Anisotropy. , 2015, ACS nano.

[14]  L. Wirtz,et al.  Unified Description of the Optical Phonon Modes in N-Layer MoTe2. , 2015, Nano letters.

[15]  A. M. van der Zande,et al.  In-Plane Anisotropy in Mono- and Few-Layer ReS2 Probed by Raman Spectroscopy and Scanning Transmission Electron Microscopy. , 2015, Nano letters.

[16]  Li Yang,et al.  Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1 T diamond-chain structures ReS 2 and ReSe 2 , 2015, 1508.03400.

[17]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[18]  Brian M. Bersch,et al.  Tungsten Ditelluride: a layered semimetal , 2015, Scientific Reports.

[19]  R. Cava,et al.  Optical properties of the perfectly compensated semimetal WTe 2 , 2015, 1506.02599.

[20]  F. Xia,et al.  Interlayer interactions in anisotropic atomically thin rhenium diselenide , 2015, Nano Research.

[21]  Peide D. Ye,et al.  Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus , 2015, Nature Communications.

[22]  R. L. Moreira,et al.  Unusual angular dependence of the Raman response in black phosphorus. , 2015, ACS nano.

[23]  Wei Zhou,et al.  Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors , 2015, Nature Communications.

[24]  P. Zhou,et al.  ReS2‐Based Field‐Effect Transistors and Photodetectors , 2015, 1503.01902.

[25]  Hua Xu,et al.  Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. , 2015, Angewandte Chemie.

[26]  Wei Shi,et al.  Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. , 2015, Chemical Society reviews.

[27]  Guanghou Wang,et al.  Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride , 2015, Nature Communications.

[28]  Y. Shi,et al.  Raman scattering investigation of large positive magnetoresistance material WTe2 , 2015, 1501.06321.

[29]  Yucheng Jiang,et al.  Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer , 2015, Scientific Reports.

[30]  Daniel Wolverson,et al.  Raman spectra of monolayer, few-layer, and bulk ReSe₂: an anisotropic layered semiconductor. , 2014, ACS nano.

[31]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[32]  R. Cava,et al.  Electronic structure basis for the extraordinary magnetoresistance in WTe2. , 2014, Physical review letters.

[33]  Li Yang,et al.  Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. , 2014, Nano letters.

[34]  Li Yang,et al.  Strain-Engineering Anisotropic Electrical Conductance of Phosphorene , 2014 .

[35]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[36]  P. Liljeroth,et al.  Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. , 2012, ACS nano.

[37]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[38]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[39]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[40]  Georg Kresse,et al.  Ab initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite , 1995 .

[41]  A. Mar,et al.  Metal-metal vs tellurium-tellurium bonding in WTe2 and its ternary variants TaIrTe4 and NbIrTe4 , 1992 .

[42]  K. S. Krishnan,et al.  The Raman Effect in Crystals , 1928, Nature.

[43]  Manuel Cardona,et al.  Light Scattering in Solids VII , 1982 .