Finding the Ionospheric Fluctuations Reflection in the Pulsar Signals’ Characteristics Observed with LOFAR

Pulsars’ signals reaching the atmosphere can be considered being stable under certain assumptions. In such a case the ionosphere remains the main factor distorting signal from the extraterrestrial sources, particularly if we observe them at long radio waves. In this article we present the results of the analysis of relative peak flux changes for two selected pulsars: PSR J0332+5434 (B0329+54) and PSR J1509+5531 (B1508+55), observed with the long radio wave sensor (The PL612 Low Frequency Array (LOFAR) station in Bałdy), together with the analysis of Rate of TEC (ROT) parameter changes measured with the Global Navigation Satellite Systems (GNSS) sensor (IGS LAMA station (IGS: International GSSN Service)). The main objective of the work is to find if the rapid plasma density (observed with the Rate of Total Electron Content (TEC)) has a counterpart in the pulsar observation characteristics. This focuses the attention on ionosphere influence during pulsar investigations at low radio frequencies. Additionally, what was the aim of this work, our results give reasons for using pulsar signals from LOFAR together with GNSS data as multi instrumental ionosphere state probes. Our results show a clear anti-correlation between the ROT and the pulsar profile’s peak flux trends.

[1]  S. Osłowski,et al.  Mode switching characteristics of PSR B0329+54 at 150 MHz , 2018 .

[2]  M. Kramer,et al.  Are There Planets around the Pulsar PSR B0329+54? , 1999 .

[3]  T. J. W. Lazio,et al.  A New Model for the Galactic Distribution of Free Electrons and its Fluctuations , 2001 .

[4]  Sabine Fenstermacher Handbook Of Pulsar Astronomy , 2016 .

[5]  A. Noutsos,et al.  Observing pulsars and fast transients with LOFAR , 2011, 1104.1577.

[6]  Ronald Nijboer,et al.  The LOFAR Telescope: System Architecture and Signal Processing , 2009, Proceedings of the IEEE.

[7]  H. Falcke,et al.  A LOFAR census of non-recycled pulsars: average profiles, dispersion measures, flux densities, and spectra , 2015, 1511.01767.

[8]  X. Wu,et al.  A study of the long-term flux density variation of PSRs B0329+54 and B1508+55 , 2004 .

[9]  Andrzej Krankowski,et al.  Approaches for modeling ionosphere irregularities based on the TEC rate index , 2014, Earth, Planets and Space.

[10]  W. Lewandowski,et al.  Pulse broadening analysis for several new pulsars and anomalous scattering , 2013, 1306.0738.

[11]  B. C. Joshi,et al.  Simultaneous multi-frequency single pulse observations of pulsars , 2017, 1704.05048.

[12]  Iurii Cherniak,et al.  GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere , 2016, Earth, Planets and Space.

[13]  H. Falcke,et al.  Pulsar polarisation below 200 MHz: Average profiles and propagation effects , 2015, 1501.03312.

[14]  D. Pines,et al.  Superfluidity in Neutron Stars , 1969, Nature.

[15]  G. Melikidze,et al.  Drifting subpulses and inner acceleration regions in radio pulsars , 2003, astro-ph/0305463.

[16]  B. J. Rickett,et al.  Radio propagation through the turbulent interstellar plasma. , 1990 .

[17]  W. A. Coles,et al.  Broadband meter‐wavelength observations of ionospheric scintillation , 2014, 1511.00937.

[18]  Richard Fallows,et al.  KAIRA: The Kilpisjärvi Atmospheric Imaging Receiver Array—System Overview and First Results , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Y. Gupta,et al.  Diffractive and refractive timescales at 4.8 GHz in PSR B0329+54 , 2011, 1107.3052.

[20]  K. Jansky,et al.  Radio Waves from Outside the Solar System , 1933, Nature.

[21]  A. Hewish,et al.  Observation of a Rapidly Pulsating Radio Source , 1968, Nature.

[22]  Andrzej Krankowski,et al.  Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service , 2014 .

[23]  Nrl,et al.  Getting Its Kicks: A VLBA Parallax for the Hyperfast Pulsar B1508+55 , 2005, astro-ph/0509031.

[24]  Robert D. Hunsucker,et al.  Atmospheric gravity waves generated in the high‐latitude ionosphere: A review , 1982 .

[25]  S. Basu,et al.  Simultaneous observation of traveling ionospheric disturbances in the Northern and Southern Hemispheres , 2009 .

[26]  On the adiabatic walking of plasma waves in a pulsar magnetosphere , 2014, 1409.1587.

[27]  Xiaoqing Pi,et al.  Monitoring of global ionospheric irregularities using the Worldwide GPS Network , 1997 .

[28]  J. Han The Large-Scale Magnetic Field Structure of Our Galaxy : Efficiently Deduced from Pulsar Rotation Measures , 2004 .

[29]  J. Pilkington,et al.  Search for Pulsating Radio Sources in the Declination Range + 44° < δ < + 90° , 1968, Nature.

[30]  N. Bhat,et al.  Simultaneous single-pulse observations of radio pulsars IV: flux density spectra of individual pulses , 2003, astro-ph/0306455.

[31]  A. Szary,et al.  Two modes of partially screened gap , 2014, 1412.3093.

[32]  Richard Wielebinski,et al.  Pulsar spectra of radio emission , 2000 .

[33]  K. Hocke,et al.  A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995 , 1996 .

[34]  B. Dabrowski,et al.  PL612 LOFAR station sensitivity measurements in the context of its application for pulsar observations , 2018, Advances in Space Research.

[35]  Ben Segal,et al.  CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH , 2001 .

[36]  D. A. Rafferty,et al.  LOFAR calibration and wide-field imaging , 2012 .

[37]  M. C. Toribio,et al.  Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR , 2015, 1509.06396.

[38]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[39]  D. Lorimer,et al.  Multifrequency flux density measurements of 280 pulsars , 1995 .

[40]  Philippe Rivière,et al.  scivision/pymap3d: enhance CI integration, modularize , 2019 .

[41]  G. Bust,et al.  LOFAR as an ionospheric probe , 2004 .

[42]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[43]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[44]  D. A. Rafferty,et al.  The effect of the ionosphere on ultra-low-frequency radio-interferometric observations , 2018, Astronomy & Astrophysics.

[45]  B. Dabrowski,et al.  Prospects for Scrutiny of Pulsars with Polish Part of LOFAR , 2016, Acta Geophysica.

[46]  R. Manchester,et al.  psrchive and psrfits: An Open Approach to Radio Pulsar Data Storage and Analysis , 2004, Publications of the Astronomical Society of Australia.

[47]  P. T. Jayachandran,et al.  Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013 , 2015 .

[48]  Andrzej Krankowski,et al.  A LOFAR observation of ionospheric scintillation from two simultaneous travelling ionospheric disturbances , 2020, Journal of Space Weather and Space Climate.

[49]  Knut Stanley Jacobsen,et al.  The impact of different sampling rates and calculation time intervals on ROTI values , 2014 .

[50]  Iurii Cherniak,et al.  Multi‐Instrumental Observation of Storm‐Induced Ionospheric Plasma Bubbles at Equatorial and Middle Latitudes , 2019, Journal of Geophysical Research: Space Physics.

[51]  Irina Zakharenkova,et al.  Climatology Characteristics of Ionospheric Irregularities Described with GNSS ROTI , 2020, Remote. Sens..

[52]  R. Poggiani Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018).

[53]  G. Mann,et al.  SEPARATING NIGHTSIDE INTERPLANETARY AND IONOSPHERIC SCINTILLATION WITH LOFAR , 2016, 1608.04504.

[54]  T. Shimwell,et al.  The Significance of Low-frequency Interferometric Observations for the GPS Pulsar Flux Estimation: The Case of J1740+1000 , 2020, The Astrophysical Journal.

[55]  R. N. Manchester,et al.  Catalog of 558 pulsars , 1993 .

[56]  R. N. Manchester,et al.  A NEW ELECTRON-DENSITY MODEL FOR ESTIMATION OF PULSAR AND FRB DISTANCES , 2016, 1610.09448.

[57]  A. van der Veen,et al.  Ionospheric Calibration for the LOFAR Radio Telescope , 2007, 2007 International Symposium on Signals, Circuits and Systems.

[58]  S. Shibata Pulsar Electrodynamics , 1999, astro-ph/9912514.

[59]  M. Bailes,et al.  DSPSR: Digital Signal Processing Software for Pulsar Astronomy , 2010, Publications of the Astronomical Society of Australia.

[60]  H. Falcke,et al.  LOFAR observations of PSR B0943+10: profile evolution and discovery of a systematically changing profile delay in Bright mode , 2014, 1408.5272.

[61]  Sabrina Hirsch,et al.  Tools Of Radio Astronomy , 2016 .

[62]  F. Schinzel,et al.  PULSAR OBSERVATIONS USING THE FIRST STATION OF THE LONG WAVELENGTH ARRAY AND THE LWA PULSAR DATA ARCHIVE , 2014, 1410.7422.

[63]  E. Astafyeva,et al.  GPS and GLONASS observations of large‐scale traveling ionospheric disturbances during the 2015 St. Patrick's Day storm , 2016 .

[64]  B. Rickett Interstellar scintillation: observational highlights , 2007 .

[65]  Andrzej Krankowski,et al.  ROTI Maps: a new IGS ionospheric product characterizing the ionospheric irregularities occurrence , 2018, GPS Solutions.

[66]  D. Mitra,et al.  Absolute broad-band polarization behaviour of PSR B0329+54: a glimpse of the core emission process , 2007, astro-ph/0701216.