Finding the Ionospheric Fluctuations Reflection in the Pulsar Signals’ Characteristics Observed with LOFAR
暂无分享,去创建一个
Andrzej Krankowski | Kacper Kotulak | Paweł Flisek | Wojciech Lewandowski | Adam Froń | Leszek P Błaszkiewicz | Jarosław Kijak | A. Krankowski | L. Blaszkiewicz | W. Lewandowski | J. Kijak | A. Froń | K. Kotulak | P. Flisek
[1] S. Osłowski,et al. Mode switching characteristics of PSR B0329+54 at 150 MHz , 2018 .
[2] M. Kramer,et al. Are There Planets around the Pulsar PSR B0329+54? , 1999 .
[3] T. J. W. Lazio,et al. A New Model for the Galactic Distribution of Free Electrons and its Fluctuations , 2001 .
[4] Sabine Fenstermacher. Handbook Of Pulsar Astronomy , 2016 .
[5] A. Noutsos,et al. Observing pulsars and fast transients with LOFAR , 2011, 1104.1577.
[6] Ronald Nijboer,et al. The LOFAR Telescope: System Architecture and Signal Processing , 2009, Proceedings of the IEEE.
[7] H. Falcke,et al. A LOFAR census of non-recycled pulsars: average profiles, dispersion measures, flux densities, and spectra , 2015, 1511.01767.
[8] X. Wu,et al. A study of the long-term flux density variation of PSRs B0329+54 and B1508+55 , 2004 .
[9] Andrzej Krankowski,et al. Approaches for modeling ionosphere irregularities based on the TEC rate index , 2014, Earth, Planets and Space.
[10] W. Lewandowski,et al. Pulse broadening analysis for several new pulsars and anomalous scattering , 2013, 1306.0738.
[11] B. C. Joshi,et al. Simultaneous multi-frequency single pulse observations of pulsars , 2017, 1704.05048.
[12] Iurii Cherniak,et al. GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere , 2016, Earth, Planets and Space.
[13] H. Falcke,et al. Pulsar polarisation below 200 MHz: Average profiles and propagation effects , 2015, 1501.03312.
[14] D. Pines,et al. Superfluidity in Neutron Stars , 1969, Nature.
[15] G. Melikidze,et al. Drifting subpulses and inner acceleration regions in radio pulsars , 2003, astro-ph/0305463.
[16] B. J. Rickett,et al. Radio propagation through the turbulent interstellar plasma. , 1990 .
[17] W. A. Coles,et al. Broadband meter‐wavelength observations of ionospheric scintillation , 2014, 1511.00937.
[18] Richard Fallows,et al. KAIRA: The Kilpisjärvi Atmospheric Imaging Receiver Array—System Overview and First Results , 2015, IEEE Transactions on Geoscience and Remote Sensing.
[19] Y. Gupta,et al. Diffractive and refractive timescales at 4.8 GHz in PSR B0329+54 , 2011, 1107.3052.
[20] K. Jansky,et al. Radio Waves from Outside the Solar System , 1933, Nature.
[21] A. Hewish,et al. Observation of a Rapidly Pulsating Radio Source , 1968, Nature.
[22] Andrzej Krankowski,et al. Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service , 2014 .
[23] Nrl,et al. Getting Its Kicks: A VLBA Parallax for the Hyperfast Pulsar B1508+55 , 2005, astro-ph/0509031.
[24] Robert D. Hunsucker,et al. Atmospheric gravity waves generated in the high‐latitude ionosphere: A review , 1982 .
[25] S. Basu,et al. Simultaneous observation of traveling ionospheric disturbances in the Northern and Southern Hemispheres , 2009 .
[26] On the adiabatic walking of plasma waves in a pulsar magnetosphere , 2014, 1409.1587.
[27] Xiaoqing Pi,et al. Monitoring of global ionospheric irregularities using the Worldwide GPS Network , 1997 .
[28] J. Han. The Large-Scale Magnetic Field Structure of Our Galaxy : Efficiently Deduced from Pulsar Rotation Measures , 2004 .
[29] J. Pilkington,et al. Search for Pulsating Radio Sources in the Declination Range + 44° < δ < + 90° , 1968, Nature.
[30] N. Bhat,et al. Simultaneous single-pulse observations of radio pulsars IV: flux density spectra of individual pulses , 2003, astro-ph/0306455.
[31] A. Szary,et al. Two modes of partially screened gap , 2014, 1412.3093.
[32] Richard Wielebinski,et al. Pulsar spectra of radio emission , 2000 .
[33] K. Hocke,et al. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995 , 1996 .
[34] B. Dabrowski,et al. PL612 LOFAR station sensitivity measurements in the context of its application for pulsar observations , 2018, Advances in Space Research.
[35] Ben Segal,et al. CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH , 2001 .
[36] D. A. Rafferty,et al. LOFAR calibration and wide-field imaging , 2012 .
[37] M. C. Toribio,et al. Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR , 2015, 1509.06396.
[38] Saul A. Teukolsky,et al. Black Holes, White Dwarfs, and Neutron Stars , 1983 .
[39] D. Lorimer,et al. Multifrequency flux density measurements of 280 pulsars , 1995 .
[40] Philippe Rivière,et al. scivision/pymap3d: enhance CI integration, modularize , 2019 .
[41] G. Bust,et al. LOFAR as an ionospheric probe , 2004 .
[42] S. Markoff,et al. LOFAR - low frequency array , 2006 .
[43] J. Taylor. DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .
[44] D. A. Rafferty,et al. The effect of the ionosphere on ultra-low-frequency radio-interferometric observations , 2018, Astronomy & Astrophysics.
[45] B. Dabrowski,et al. Prospects for Scrutiny of Pulsars with Polish Part of LOFAR , 2016, Acta Geophysica.
[46] R. Manchester,et al. psrchive and psrfits: An Open Approach to Radio Pulsar Data Storage and Analysis , 2004, Publications of the Astronomical Society of Australia.
[47] P. T. Jayachandran,et al. Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013 , 2015 .
[48] Andrzej Krankowski,et al. A LOFAR observation of ionospheric scintillation from two simultaneous travelling ionospheric disturbances , 2020, Journal of Space Weather and Space Climate.
[49] Knut Stanley Jacobsen,et al. The impact of different sampling rates and calculation time intervals on ROTI values , 2014 .
[50] Iurii Cherniak,et al. Multi‐Instrumental Observation of Storm‐Induced Ionospheric Plasma Bubbles at Equatorial and Middle Latitudes , 2019, Journal of Geophysical Research: Space Physics.
[51] Irina Zakharenkova,et al. Climatology Characteristics of Ionospheric Irregularities Described with GNSS ROTI , 2020, Remote. Sens..
[52] R. Poggiani. Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018).
[53] G. Mann,et al. SEPARATING NIGHTSIDE INTERPLANETARY AND IONOSPHERIC SCINTILLATION WITH LOFAR , 2016, 1608.04504.
[54] T. Shimwell,et al. The Significance of Low-frequency Interferometric Observations for the GPS Pulsar Flux Estimation: The Case of J1740+1000 , 2020, The Astrophysical Journal.
[55] R. N. Manchester,et al. Catalog of 558 pulsars , 1993 .
[56] R. N. Manchester,et al. A NEW ELECTRON-DENSITY MODEL FOR ESTIMATION OF PULSAR AND FRB DISTANCES , 2016, 1610.09448.
[57] A. van der Veen,et al. Ionospheric Calibration for the LOFAR Radio Telescope , 2007, 2007 International Symposium on Signals, Circuits and Systems.
[58] S. Shibata. Pulsar Electrodynamics , 1999, astro-ph/9912514.
[59] M. Bailes,et al. DSPSR: Digital Signal Processing Software for Pulsar Astronomy , 2010, Publications of the Astronomical Society of Australia.
[60] H. Falcke,et al. LOFAR observations of PSR B0943+10: profile evolution and discovery of a systematically changing profile delay in Bright mode , 2014, 1408.5272.
[61] Sabrina Hirsch,et al. Tools Of Radio Astronomy , 2016 .
[62] F. Schinzel,et al. PULSAR OBSERVATIONS USING THE FIRST STATION OF THE LONG WAVELENGTH ARRAY AND THE LWA PULSAR DATA ARCHIVE , 2014, 1410.7422.
[63] E. Astafyeva,et al. GPS and GLONASS observations of large‐scale traveling ionospheric disturbances during the 2015 St. Patrick's Day storm , 2016 .
[64] B. Rickett. Interstellar scintillation: observational highlights , 2007 .
[65] Andrzej Krankowski,et al. ROTI Maps: a new IGS ionospheric product characterizing the ionospheric irregularities occurrence , 2018, GPS Solutions.
[66] D. Mitra,et al. Absolute broad-band polarization behaviour of PSR B0329+54: a glimpse of the core emission process , 2007, astro-ph/0701216.