Introduction: 100 years of Brownian motion.

In the year 1905 Albert Einstein published four pap that raised him to a giant in the history of science. Th works encompass the photo-electric effect sfor which he ob tained the Nobel prize in 1921 d, his first two papers onsspeciald relativity theory, and his first paper on Brownian m tion, entitled “Über die von der molekularkinetisch Theorie der Wärme geforderte Bewegung von in ruhen Flüssigkeiten suspendierten Teilchen” ssubmitted on 11 Ma 1905d. Thanks to Einstein’s intuition, the phenomenon served by the Scottish botanist Robert Brown 2 i 1827—a little more than a naturalist’s curiosity—becomes the k stone of a fully probabilistic formulation of statistical m chanics and a well-established subject of physical inves tion which we celebrate in this Focus Issue entitled—for reason—“100 Years of Brownian Motion.” Although written in a dated language, Einstein’s first per on Brownian motion already contains the cornerston the modern theory of stochastic processes. The author out using arguments of thermodynamics and the conce osmotic pressure of suspended particles to evaluate a p diffusion constant by balancing a diffusion current wit drift currentsthrough Stokes’ lawd. In doing so, he obtains relation between two transport coefficients: the particle fusion constant and the fluid viscosity, or friction. This re tion, known as the Einstein relation, 3 was later generalized terms of the famous fluctuation-dissipation theorem Callen and Welton 4 and by the linear response theory Kubo. A much clearer discussion of Einstein’s argume can be found in his thesis work, accepted by the Unive of Zurich in July 1905, which he submitted for publicatio 6

[1]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[2]  George M. Zaslavsky,et al.  Fractional kinetic equation for Hamiltonian chaos , 1994 .

[3]  Brownian motion-June 1827 (for teachers) , 1978 .

[4]  Robert Zwanzig,et al.  Memory Effects in Irreversible Thermodynamics , 1961 .

[5]  Cohen,et al.  Dynamical Ensembles in Nonequilibrium Statistical Mechanics. , 1994, Physical review letters.

[6]  Kyozi Kawasaki,et al.  Kinetic equations and time correlation functions of critical fluctuations , 1970 .

[7]  Fabio Marchesoni,et al.  Asymmetric confinement in a noisy bistable device , 2004 .

[8]  Kurt Wiesenfeld,et al.  Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.

[9]  Peter Hänggi,et al.  Fundamental aspects of quantum Brownian motion. , 2005, Chaos.

[10]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[11]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[12]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[13]  Erwin Frey,et al.  Brownian motion: a paradigm of soft matter and biological physics , 2005, Annalen der Physik.

[14]  Robert Brown,et al.  XXIV. Additional remarks on active molecules , 1829 .

[15]  F. Marchesoni,et al.  Basic Description of the Rules Leading to the Adiabatic Elimination of Fast Variables , 2007 .

[16]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .

[17]  C. Jarzynski Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach , 1997, cond-mat/9707325.

[18]  H. Spohn Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .

[19]  Eli Pollak,et al.  Reaction rate theory: what it was, where is it today, and where is it going? , 2005, Chaos.

[20]  Quantum features of Brownian motors and stochastic resonance. , 1998, Chaos.

[21]  L. Schimansky-Geier,et al.  Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems. , 2005, Chaos.

[22]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[23]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[24]  E. Tirapegui,et al.  Functional Integration and Semiclassical Expansions , 1982 .

[25]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[26]  R. Brown XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies , 1828 .

[27]  H. Kleinert Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets , 2006 .

[28]  F. Marchesoni,et al.  On the extension of the Kramers theory of chemical relaxation to the case of nonwhite noise , 1983 .

[29]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[30]  Bray,et al.  Path integrals and non-Markov processes. I. General formalism. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[31]  D. Lemons,et al.  Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)] , 1997 .

[32]  P. Reimann Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.

[33]  Robert Graham,et al.  Path integral formulation of general diffusion processes , 1977 .

[34]  N Wiener,et al.  The Average of an Analytic Functional and the Brownian Movement. , 1921, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M Cencini,et al.  Brownian motion and diffusion: from stochastic processes to chaos and beyond. , 2004, Chaos.

[36]  Peter Hänggi,et al.  Generalized langevin equations: A useful tool for the perplexed modeller of nonequilibrium fluctuations? , 1997 .

[37]  Debra J. Searles,et al.  The Fluctuation Theorem , 2002 .

[38]  F. Marchesoni,et al.  Bistable flow driven by coloured gaussian noise: A critical study , 1984 .

[39]  Ford,et al.  On the quantum langevin equation , 1981, Physical review. A, General physics.

[40]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[41]  Lars Onsager,et al.  Fluctuations and Irreversible Processes , 1953 .

[42]  Abraham Pais,et al.  ‘Subtle Is the Lord …’: The Science and the Life of Albert Einstein by Abraham Pais (review) , 1984 .

[43]  Peter Hänggi,et al.  Brownian rectifiers: How to convert brownian motion into directed transport , 1996 .

[44]  C Bechinger,et al.  Colloids as model systems for problems in statistical physics. , 2005, Chaos.

[45]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[46]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[47]  Albert Einstein,et al.  Elementare Theorie der Brownschen) Bewegung , 1908 .

[48]  J. Zinn-Justin Path integrals in quantum mechanics , 2005 .

[49]  C. Angell Dynamic processes in ionic glasses , 1990 .

[50]  H. Grabert,et al.  Projection Operator Techniques in Nonequilibrium Statistical Mechanics , 1982 .

[51]  Y. Gliklikh The Langevin Equation , 1997 .

[52]  F. Marchesoni,et al.  Brownian motors , 2004, cond-mat/0410033.

[53]  N. Wiener The Mean of a Functional of Arbitrary Elements , 1920 .

[54]  W. Sutherland,et al.  LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin , 1905 .

[55]  Peter Hänggi,et al.  Stochastic processes: Time evolution, symmetries and linear response , 1982 .

[56]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[57]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[58]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[59]  F. Marchesoni Solitons in a random field of force: A Langevin equation approach , 1986 .

[60]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[61]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[62]  J. Łuczka,et al.  Non-Markovian stochastic processes: colored noise. , 2005, Chaos.

[63]  Martin J Zuckermann,et al.  Performance characteristics of Brownian motors. , 2005, Chaos.

[64]  E. Santos,et al.  Path integrals for non-markovian processes , 1983 .

[65]  P. Reimann,et al.  Moving backward noisily. , 2005, Chaos.

[66]  Sodano,et al.  Nucleation of thermal sine-Gordon solitons: Effect of many-body interactions. , 1988, Physical review letters.

[67]  Peter Hänggi,et al.  Microdynamics and nonlinear stochastic processes of gross variables , 1980 .

[68]  Thorsten Pöschel,et al.  Self-diffusion in granular gases: Green-Kubo versus Chapman-Enskog. , 2005, Chaos.

[69]  F. Marchesoni,et al.  Noise-assisted transport on symmetric periodic substrates. , 2005, Chaos.

[70]  R. Kubo Brownian Motion and Nonequilibrium Statistical Mechanics , 1986, Science.

[71]  E. Cohen,et al.  Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.

[72]  Random walks, diffusion limited aggregation in a wedge, and average conformal maps. , 2005, Chaos.

[73]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[74]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[75]  Sture Nordholm,et al.  A systematic derivation of exact generalized Brownian motion theory , 1975 .

[76]  Lars Onsager,et al.  Fluctuations and Irreversible Process. II. Systems with Kinetic Energy , 1953 .

[77]  I M Sokolov,et al.  From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.

[78]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[79]  P. Jung,et al.  Colored Noise in Dynamical Systems , 2007 .

[80]  Quantum Brownian motion with large friction. , 2004, Chaos.

[81]  E. Leutheusser Dynamical model of the liquid-glass transition , 1984 .

[82]  Manuel Morillo,et al.  Stochastic resonance: theory and numerics. , 2005, Chaos.

[83]  Evans,et al.  Probability of second law violations in shearing steady states. , 1993, Physical review letters.

[84]  Jean-Philippe Bouchaud,et al.  The subtle nature of financial random walks. , 2005, Chaos.

[85]  J. Weber,et al.  Fluctuation Dissipation Theorem , 1956 .

[86]  Wio,et al.  Path-integral formulation for stochastic processes driven by colored noise. , 1989, Physical review. A, General physics.

[87]  M. Haw Colloidal suspensions, Brownian motion, molecular reality: a short history , 2002 .

[88]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[89]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[90]  M. Shlesinger,et al.  Beyond Brownian motion , 1996 .

[91]  F. Haake Statistical treatment of open systems by generalized master equations , 1973 .

[92]  Jean-Philippe Bouchaud,et al.  Mode-coupling approximations, glass theory and disordered systems , 1995, cond-mat/9511042.

[93]  Kyozi Kawasaki,et al.  Simple derivations of generalized linear and nonlinear Langevin equations , 1973 .

[94]  P. Hänggi Path integral solutions for non-Markovian processes , 1989 .

[95]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[96]  W. Gotze,et al.  Relaxation processes in supercooled liquids , 1992 .

[97]  A. Bader,et al.  Joseph Loschmidt, physicist and chemist , 2001 .

[98]  F. Nori,et al.  Controlling the motion of interacting particles: homogeneous systems and binary mixtures. , 2005, Chaos.

[99]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .