Introduction: 100 years of Brownian motion.
暂无分享,去创建一个
[1] K. Lendi,et al. Quantum Dynamical Semigroups and Applications , 1987 .
[2] George M. Zaslavsky,et al. Fractional kinetic equation for Hamiltonian chaos , 1994 .
[3] Brownian motion-June 1827 (for teachers) , 1978 .
[4] Robert Zwanzig,et al. Memory Effects in Irreversible Thermodynamics , 1961 .
[5] Cohen,et al. Dynamical Ensembles in Nonequilibrium Statistical Mechanics. , 1994, Physical review letters.
[6] Kyozi Kawasaki,et al. Kinetic equations and time correlation functions of critical fluctuations , 1970 .
[7] Fabio Marchesoni,et al. Asymmetric confinement in a noisy bistable device , 2004 .
[8] Kurt Wiesenfeld,et al. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.
[9] Peter Hänggi,et al. Fundamental aspects of quantum Brownian motion. , 2005, Chaos.
[10] Jens Lothe John Price Hirth,et al. Theory of Dislocations , 1968 .
[11] J. Elgin. The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .
[12] A. Einstein. Eine neue Bestimmung der Moleküldimensionen , 1905 .
[13] Erwin Frey,et al. Brownian motion: a paradigm of soft matter and biological physics , 2005, Annalen der Physik.
[14] Robert Brown,et al. XXIV. Additional remarks on active molecules , 1829 .
[15] F. Marchesoni,et al. Basic Description of the Rules Leading to the Adiabatic Elimination of Fast Variables , 2007 .
[16] Melville S. Green,et al. Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .
[17] C. Jarzynski. Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach , 1997, cond-mat/9707325.
[18] H. Spohn. Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .
[19] Eli Pollak,et al. Reaction rate theory: what it was, where is it today, and where is it going? , 2005, Chaos.
[20] Quantum features of Brownian motors and stochastic resonance. , 1998, Chaos.
[21] L. Schimansky-Geier,et al. Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems. , 2005, Chaos.
[22] R. Kubo. The fluctuation-dissipation theorem , 1966 .
[23] Gregoire Nicolis,et al. Stochastic resonance , 2007, Scholarpedia.
[24] E. Tirapegui,et al. Functional Integration and Semiclassical Expansions , 1982 .
[25] R. Feynman,et al. Quantum Mechanics and Path Integrals , 1965 .
[26] R. Brown. XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies , 1828 .
[27] H. Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets , 2006 .
[28] F. Marchesoni,et al. On the extension of the Kramers theory of chemical relaxation to the case of nonwhite noise , 1983 .
[29] H. Mori. Transport, Collective Motion, and Brownian Motion , 1965 .
[30] Bray,et al. Path integrals and non-Markov processes. I. General formalism. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[31] D. Lemons,et al. Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)] , 1997 .
[32] P. Reimann. Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.
[33] Robert Graham,et al. Path integral formulation of general diffusion processes , 1977 .
[34] N Wiener,et al. The Average of an Analytic Functional and the Brownian Movement. , 1921, Proceedings of the National Academy of Sciences of the United States of America.
[35] M Cencini,et al. Brownian motion and diffusion: from stochastic processes to chaos and beyond. , 2004, Chaos.
[36] Peter Hänggi,et al. Generalized langevin equations: A useful tool for the perplexed modeller of nonequilibrium fluctuations? , 1997 .
[37] Debra J. Searles,et al. The Fluctuation Theorem , 2002 .
[38] F. Marchesoni,et al. Bistable flow driven by coloured gaussian noise: A critical study , 1984 .
[39] Ford,et al. On the quantum langevin equation , 1981, Physical review. A, General physics.
[40] C. Jarzynski. Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.
[41] Lars Onsager,et al. Fluctuations and Irreversible Processes , 1953 .
[42] Abraham Pais,et al. ‘Subtle Is the Lord …’: The Science and the Life of Albert Einstein by Abraham Pais (review) , 1984 .
[43] Peter Hänggi,et al. Brownian rectifiers: How to convert brownian motion into directed transport , 1996 .
[44] C Bechinger,et al. Colloids as model systems for problems in statistical physics. , 2005, Chaos.
[45] L. Onsager. Reciprocal Relations in Irreversible Processes. II. , 1931 .
[46] G. Zaslavsky. Chaos, fractional kinetics, and anomalous transport , 2002 .
[47] Albert Einstein,et al. Elementare Theorie der Brownschen) Bewegung , 1908 .
[48] J. Zinn-Justin. Path integrals in quantum mechanics , 2005 .
[49] C. Angell. Dynamic processes in ionic glasses , 1990 .
[50] H. Grabert,et al. Projection Operator Techniques in Nonequilibrium Statistical Mechanics , 1982 .
[51] Y. Gliklikh. The Langevin Equation , 1997 .
[52] F. Marchesoni,et al. Brownian motors , 2004, cond-mat/0410033.
[53] N. Wiener. The Mean of a Functional of Arbitrary Elements , 1920 .
[54] W. Sutherland,et al. LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin , 1905 .
[55] Peter Hänggi,et al. Stochastic processes: Time evolution, symmetries and linear response , 1982 .
[56] R. Kubo. Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .
[57] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[58] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[59] F. Marchesoni. Solitons in a random field of force: A Langevin equation approach , 1986 .
[60] Edward Nelson. Dynamical Theories of Brownian Motion , 1967 .
[61] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[62] J. Łuczka,et al. Non-Markovian stochastic processes: colored noise. , 2005, Chaos.
[63] Martin J Zuckermann,et al. Performance characteristics of Brownian motors. , 2005, Chaos.
[64] E. Santos,et al. Path integrals for non-markovian processes , 1983 .
[65] P. Reimann,et al. Moving backward noisily. , 2005, Chaos.
[66] Sodano,et al. Nucleation of thermal sine-Gordon solitons: Effect of many-body interactions. , 1988, Physical review letters.
[67] Peter Hänggi,et al. Microdynamics and nonlinear stochastic processes of gross variables , 1980 .
[68] Thorsten Pöschel,et al. Self-diffusion in granular gases: Green-Kubo versus Chapman-Enskog. , 2005, Chaos.
[69] F. Marchesoni,et al. Noise-assisted transport on symmetric periodic substrates. , 2005, Chaos.
[70] R. Kubo. Brownian Motion and Nonequilibrium Statistical Mechanics , 1986, Science.
[71] E. Cohen,et al. Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.
[72] Random walks, diffusion limited aggregation in a wedge, and average conformal maps. , 2005, Chaos.
[73] M. Smoluchowski. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .
[74] K. Binder,et al. Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .
[75] Sture Nordholm,et al. A systematic derivation of exact generalized Brownian motion theory , 1975 .
[76] Lars Onsager,et al. Fluctuations and Irreversible Process. II. Systems with Kinetic Energy , 1953 .
[77] I M Sokolov,et al. From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.
[78] R. Zwanzig. Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).
[79] P. Jung,et al. Colored Noise in Dynamical Systems , 2007 .
[80] Quantum Brownian motion with large friction. , 2004, Chaos.
[81] E. Leutheusser. Dynamical model of the liquid-glass transition , 1984 .
[82] Manuel Morillo,et al. Stochastic resonance: theory and numerics. , 2005, Chaos.
[83] Evans,et al. Probability of second law violations in shearing steady states. , 1993, Physical review letters.
[84] Jean-Philippe Bouchaud,et al. The subtle nature of financial random walks. , 2005, Chaos.
[85] J. Weber,et al. Fluctuation Dissipation Theorem , 1956 .
[86] Wio,et al. Path-integral formulation for stochastic processes driven by colored noise. , 1989, Physical review. A, General physics.
[87] M. Haw. Colloidal suspensions, Brownian motion, molecular reality: a short history , 2002 .
[88] R. Feynman,et al. Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .
[89] J. Bouchaud,et al. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .
[90] M. Shlesinger,et al. Beyond Brownian motion , 1996 .
[91] F. Haake. Statistical treatment of open systems by generalized master equations , 1973 .
[92] Jean-Philippe Bouchaud,et al. Mode-coupling approximations, glass theory and disordered systems , 1995, cond-mat/9511042.
[93] Kyozi Kawasaki,et al. Simple derivations of generalized linear and nonlinear Langevin equations , 1973 .
[94] P. Hänggi. Path integral solutions for non-Markovian processes , 1989 .
[95] H. Callen,et al. Irreversibility and Generalized Noise , 1951 .
[96] W. Gotze,et al. Relaxation processes in supercooled liquids , 1992 .
[97] A. Bader,et al. Joseph Loschmidt, physicist and chemist , 2001 .
[98] F. Nori,et al. Controlling the motion of interacting particles: homogeneous systems and binary mixtures. , 2005, Chaos.
[99] P. Hänggi,et al. Reaction-rate theory: fifty years after Kramers , 1990 .