Synchrosqueezed wave packet transforms and diffeomorphism based spectral analysis for 1D general mode decompositions

Abstract This paper develops new theory and algorithms for 1D general mode decompositions. First, we introduce the 1D synchrosqueezed wave packet transform and prove that it is able to estimate instantaneous information of well-separated modes from their superposition accurately. The synchrosqueezed wave packet transform has a better resolution than the synchrosqueezed wavelet transform in the time–frequency domain for separating high frequency modes. Second, we present a new approach based on diffeomorphisms for the spectral analysis of general shape functions. These two methods lead to a framework for general mode decompositions under a weak well-separation condition and a well-different condition. Numerical examples of synthetic and real data are provided to demonstrate the fruitful applications of these methods.

[1]  T. Hou,et al.  Data-driven time-frequency analysis , 2012, 1202.5621.

[2]  Patrick Flandrin,et al.  Time-Frequency/Time-Scale Reassignment , 2003 .

[3]  L. Demanet,et al.  Wave atoms and sparsity of oscillatory patterns , 2007 .

[4]  Patrick Flandrin,et al.  Improving the readability of time-frequency and time-scale representations by the reassignment method , 1995, IEEE Trans. Signal Process..

[5]  Lexing Ying,et al.  Synchrosqueezed Wave Packet Transform for 2D Mode Decomposition , 2013, SIAM J. Imaging Sci..

[6]  Stanley Osher,et al.  Empirical Transforms . Wavelets , Ridgelets and Curvelets revisited , 2013 .

[7]  Emmanuel J. Candès,et al.  A Geometric Analysis of Subspace Clustering with Outliers , 2011, ArXiv.

[8]  P. Flandrin,et al.  Differential reassignment , 1997, IEEE Signal Processing Letters.

[9]  Jérôme Gilles,et al.  Empirical Wavelet Transform , 2013, IEEE Transactions on Signal Processing.

[10]  Y C Fung,et al.  Engineering analysis of biological variables: an example of blood pressure over 1 day. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Veltcheva Wave and Group Transformation by a Hilbert Spectrum , 2002 .

[12]  Emmanuel J. Candès,et al.  Robust Subspace Clustering , 2013, ArXiv.

[13]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[14]  Hau-Tieng Wu,et al.  Evaluating Physiological Dynamics via Synchrosqueezing: Prediction of Ventilator Weaning , 2013, IEEE Transactions on Biomedical Engineering.

[15]  Mirko van der Baan,et al.  Time-Frequency Representation of Microseismic Signals using the Synchrosqueezing Transform , 2013, ArXiv.

[16]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[17]  Patrick Flandrin,et al.  Making reassignment adjustable: The Levenberg-Marquardt approach , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[18]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Hau-Tieng Wu,et al.  Non‐parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors , 2014 .

[20]  Patrick Flandrin,et al.  One or Two frequencies? The Synchrosqueezing Answers , 2011, Adv. Data Sci. Adapt. Anal..

[21]  Hau-tieng Wu,et al.  Instantaneous frequency and wave shape functions (I) , 2011, 1104.2365.

[22]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[23]  Bernard C. Picinbono,et al.  On instantaneous amplitude and phase of signals , 1997, IEEE Trans. Signal Process..

[24]  Sylvain Meignen,et al.  Time-Frequency Reassignment and Synchrosqueezing: An Overview , 2013, IEEE Signal Processing Magazine.

[25]  Norden E. Huang,et al.  Some Considerations on Physical Analysis of Data , 2011, Adv. Data Sci. Adapt. Anal..

[26]  Lexing Ying,et al.  Synchrosqueezed Curvelet Transform for 2D Mode Decomposition , 2013, 1310.6079.

[27]  A. Goldberger Clinical Electrocardiography: A Simplified Approach , 1977 .

[28]  Thomas Y. Hou,et al.  Adaptive Data Analysis via Sparse Time-Frequency Representation , 2011, Adv. Data Sci. Adapt. Anal..

[29]  Gabriel Rilling,et al.  One or Two Frequencies? The Empirical Mode Decomposition Answers , 2008, IEEE Transactions on Signal Processing.

[30]  Lexing Ying,et al.  Synchrosqueezed Curvelet Transform for Two-Dimensional Mode Decomposition , 2014, SIAM J. Math. Anal..

[31]  Wu Hau-Tieng,et al.  Using synchrosqueezing transform to discover breathing dynamics from ECG signals , 2011 .

[32]  Hau-Tieng Wu,et al.  The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications , 2011, Signal Process..

[33]  Hau-Tieng Wu,et al.  Synchrosqueezing-Based Recovery of Instantaneous Frequency from Nonuniform Samples , 2010, SIAM J. Math. Anal..

[34]  Zhaohua Wu,et al.  A Variant of the EMD Method for Multi-Scale Data , 2009, Adv. Data Sci. Adapt. Anal..

[35]  Chuan Li,et al.  A generalized synchrosqueezing transform for enhancing signal time-frequency representation , 2012, Signal Process..

[36]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.

[37]  Norden E. Huang,et al.  On Instantaneous Frequency , 2009, Adv. Data Sci. Adapt. Anal..

[38]  Thomas Y. Hou,et al.  Convergence of a data-driven time-frequency analysis method , 2013, ArXiv.

[39]  I. Daubechies,et al.  Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .