Centre-specific autonomous treatment plans for prostate brachytherapy using cGANs

In low-dose-rate prostate brachytherapy (LDR-PB), treatment planning is the process of determining the arrangement of implantable radioactive sources that radiates the prostate while sparing healthy surrounding tissues. Currently, these plans are prepared manually by experts incorporating the centre’s planning style and guidelines. In this article, we develop a novel framework that can learn a centre’s planning strategy and automatically reproduce rapid clinically acceptable plans. The proposed framework is based on conditional generative adversarial networks that learn our centre’s planning style using a pool of 931 historical LDR-PB planning data. Two additional losses that help constrain prohibited needle patterns and produce similar-looking plans are also proposed. Once trained, this model generates an initial distribution of needles which is passed to a planner. The planner then initializes the sources based on the predicted needles and uses a simulated annealing algorithm to optimize their locations further. Quantitative analysis was carried out on 170 cases which showed the generated plans having similar dosimetry to that of the manual plans but with significantly lower planning durations. Indeed, on the test cases, the clinical target volumes achieving 100%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\%$$\end{document} of the prescribed dose for the generated plans was on average 98.98%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.98\%$$\end{document} (99.36%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.36\%$$\end{document} for manual plans) with an average planning time of 3.04±1.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.04\pm 1.1$$\end{document} min (20±10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20\pm 10$$\end{document} min for manual plans). Further qualitative analysis was conducted by an expert planner who accepted 90%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$90\%$$\end{document} of the plans with some changes (60%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$60\%$$\end{document} requiring minor changes & 30%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30\%$$\end{document} requiring major changes). The proposed framework demonstrated the ability to rapidly generate quality treatment plans that not only fulfil the dosimetric requirements but also takes into account the centre’s planning style. Adoption of such a framework would save significant amount of time and resources spent on every patient; boosting the overall operational efficiency of this treatment.

[1]  K. Wallner,et al.  Long-term outcome for clinically localized prostate cancer treated with permanent interstitial brachytherapy. , 2010, International journal of radiation oncology, biology, physics.

[2]  M. Ferris,et al.  An iterative sequential mixed-integer approach to automated prostate brachytherapy treatment plan optimization. , 2001, Physics in medicine and biology.

[3]  Purang Abolmaesumi,et al.  Automatic Prostate Brachytherapy Preplanning Using Joint Sparse Analysis , 2015, MICCAI.

[4]  J. Pouliot,et al.  Optimization of permanent 125I prostate implants using fast simulated annealing. , 1996, International journal of radiation oncology, biology, physics.

[5]  Michael D. Peacock,et al.  Automatic dual air kerma strength treatment planning for focal low-dose-rate prostate brachytherapy boost using dosimetric and geometric constraints , 2020, 2010.12617.

[6]  A. Jemal,et al.  Cancer statistics, 2020 , 2020, CA: a cancer journal for clinicians.

[7]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Septimiu E. Salcudean,et al.  Semi-automatic segmentation for prostate interventions , 2011, Medical Image Anal..

[9]  Carlos E. Testuri,et al.  A model for prostate brachytherapy planning with sources and needles position optimization , 2014 .

[10]  C Guthier,et al.  A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning , 2015, Physics in medicine and biology.

[11]  Nawaid Usmani,et al.  Initial clinical assessment of "center-specific" automated treatment plans for low-dose-rate prostate brachytherapy. , 2018, Brachytherapy.

[12]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[13]  The Seattle Prostate Institute approach to treatment planning for permanent implants , 2005 .

[14]  J. Sylvester,et al.  Inter-institutional variation of implant activity for permanent prostate brachytherapy. , 2008, Brachytherapy.

[15]  Ananth Ravi,et al.  Evaluation of a Machine-Learning Algorithm for Treatment Planning in Prostate Low-Dose-Rate Brachytherapy. , 2017, International journal of radiation oncology, biology, physics.

[16]  W. J. Morris,et al.  Urethral and periurethral dosimetry in prostate brachytherapy: is there a convenient surrogate? , 2002, International journal of radiation oncology, biology, physics.

[17]  Nawaid Usmani,et al.  Canadian prostate brachytherapy in 2012. , 2013, Canadian Urological Association journal = Journal de l'Association des urologues du Canada.

[18]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[19]  Michael C. Ferris,et al.  MIP Models and BB Strategies in Brachytherapy Treatment Optimization , 2003, J. Glob. Optim..