[17] Time-resolved fluorescence measurements

Nanosecond fluorescence measurements can now be routinely performed and the data can be analyzed in terms of specified decay laws. It is anticipated that nanosecond fluorometry will continue to aid in the elucidation of a variety of excited state mechanistic pathways. This in turn will result in the more sophisticated use of fluorescence probes in biochemistry and cell biology. At the beginning of this decade, Ware9 indicated that the ideal decay fluorometer should permit measurements with samples where the absorbance quantum yield product is 10−10, with high spectral resolution and picosecond time resolution over a wide spectral range. Many of the requirements which seemed so stringent then have now been met. It is likely that the next review on rapid decay techniques will be able to show that picosecond experiments can be carried out with the same degree of confidence that is now possible on the nanosecond time scale.

[1]  M. Shinitzky Effect of Fluorescence Polarization on Fluorescence Intensity and Decay Measurements , 1972 .

[2]  P. Chow,et al.  Time-resolved nanosecond emission spectroscopy: spectral shift due to solvent-solute relaxation☆ , 1968 .

[3]  A. Grinvald,et al.  An improvement of nanosecond fluorimeters to overcome drift problems , 1974 .

[4]  W. P. Helman Analysis of very fast transient luminescence behavior , 1971 .

[5]  A Grinvald,et al.  On the analysis of fluorescence decay kinetics by the method of least-squares. , 1974, Analytical biochemistry.

[6]  Peter P. Chow,et al.  Nanosecond Time-Resolved Emission Spectroscopy: Spectral Shifts due to Solvent-Excited Solute Relaxation , 1971 .

[7]  Z. Bay,et al.  Statistical Theory of Delayed-Coincidence Experiments , 1955 .

[8]  L. Brand,et al.  Excited state solvation dynamics of 2-anilinonaphthalene , 1977 .

[9]  F. Perrin Polarisation de la lumière de fluorescence. Vie moyenne des molécules dans l'etat excité , 1926 .

[10]  R. D. Dyson,et al.  The analysis of fluorescence decay by a method of moments. , 1969, Biophysical journal.

[11]  R. Mills Diffusion relations in the binary system benzene-perdeuteriobenzene at 25.degree.C , 1976 .

[12]  Graham R. Fleming,et al.  Direct observation of rotational diffusion by picosecond spectroscopy , 1976 .

[13]  J. Loeb,et al.  More about process identification , 1965 .

[14]  H. P. Tschanz,et al.  The precise measurement of the fluorescence polarisation anisotropy by single-photon counting , 1976 .

[15]  L. Brand,et al.  Analysis of fluorescence decay curves by means of the Laplace transformation. , 1975, Biophysical journal.

[16]  S. Provencher A Fourier method for the analysis of exponential decay curves. , 1976, Biophysical journal.

[17]  L. Brand,et al.  Nanosecond time-resolved fluorescence spectra of a protein-dye complex. , 1971, The Journal of biological chemistry.

[18]  I. B. Berlman,et al.  VERSATILE TECHNIQUE FOR MEASURING FLUORESCENCE DECAY TIMES IN THE NANOSECOND REGION , 1963 .

[19]  P. Wahl Mesure de la décroissance de la fluorescence polarisée de la γ-globuline-1-sulfonyl-5-diméthylaminonaphtalène , 1969 .

[20]  P. Wahl,et al.  Étude du déclin de la fluorescence du lysozyme-i-diméthylaminonaphtaléne-5-sulfonyl , 1967 .

[21]  C. Martín,et al.  Rotational relaxation of 1,6-diphenylhexatriene in membrane lipids of cells acclimated to high and low growth temperatures. , 1978, Biochemistry.

[22]  L. Brand,et al.  Fluorescence measurements of environmental relaxation at the lipid-water interface region of bilayer membranes. , 1978, Biochimica et biophysica acta.

[23]  I. Isenberg On the theory of fluorescence decay experiments. I. Nonrandom distortions , 1973 .

[24]  J. Demas,et al.  Evaluation of photoluminescence lifetimes , 1971 .

[25]  G. Heidt,et al.  Phase fluorometer with a continuously variable frequency , 1975 .

[26]  A. G. Szabo,et al.  The deconvolution of photoluminescence data , 1977 .

[27]  R. D. Spencer,et al.  MEASUREMENTS OF SUBNANOSECOND FLUORESCENCE LIFETIMES WITH A CROSS‐CORRELATION PHASE FLUOROMETER * , 1969 .

[28]  William R. Ware,et al.  Deconvolution of fluorescence and phosphorescence decay curves. Least-squares method , 1973 .

[29]  L. Brand,et al.  Dynamic interactions of fluorescence probes with the solvent environment. , 1976, Journal of the American Chemical Society.

[30]  Branko Leskovar,et al.  Photon counting system for subnanosecond fluorescence lifetime measurements , 1976 .

[31]  A. Grinvald The use of standards in the analysis of fluorescence decay data. , 1976, Analytical biochemistry.

[32]  R. Bennett Instrument to Measure Fluorescence Lifetimes in the Millimicrosecond Region , 1960 .

[33]  W. Ware,et al.  The direct observation of transient effects in diffusion-controlled fluorescence quenching , 1973 .

[34]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[35]  L. Brand,et al.  Nanosecond decay studies of a fluorescence probe bound to apomyoglobin. , 1977, Biophysical journal.

[36]  Joel M. Harris,et al.  Spectroscopic excitation source with variable frequencies and shapes of modulation , 1975 .

[37]  R. Dale,et al.  Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of "microviscosity". , 1977, The Journal of biological chemistry.

[38]  R. Dale,et al.  Rotational relaxation of the "microviscosity" probe diphenylhexatriene in paraffin oil and egg lecithin vesicles. , 1977, The Journal of biological chemistry.

[39]  A. Kalantar Consequences of Photoselection on the Intensity and Polarization of Luminescent Molecules , 1968 .

[40]  J. Yguerabide Generation and Detection of Subnanosecond Light Pulses: Application to Luminescence Studies , 1965 .

[41]  R. Schuyler,et al.  A Monophoton Fluorometer with Energy Discrimination , 1971 .

[42]  L. Stryer,et al.  Effect of cholesterol on the rotational mobility of diphenylhexatriene in liposomes: a nanosecond fluorescence anisotrophy study. , 1977, Journal of molecular biology.

[43]  E. Small,et al.  The use of moment index displacement in analyzing fluorescence time‐decay data , 1976 .

[44]  Klaus D. Mielenz,et al.  Elimination of polarization bias in fluorescence intensity measurements , 1976 .

[45]  Bernard Valeur,et al.  Analyse des courbes de décroissance multiexponentielles par la méthode des fonctions modulatrices-application à la fluorescence , 1973 .

[46]  L. Brand,et al.  Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to L-alpha-egg lecithin vesicles. , 1976, Biophysical journal.

[47]  N. Nakashima,et al.  Time-Resolved Fluorescence Studies on Charge Transfer Interactions in 1,2,4,5-Tetracyanobenzene-Toluene Complex , 1971 .

[48]  S. Georghiou,et al.  Versatile nanosecond fluorometer employing a boxcar averager , 1976 .

[49]  I. Isenberg On the theory of fluorescence decay experiments. II. Statistics , 1973 .

[50]  R. D. Dyson,et al.  Studies on the analysis of fluorescence decay data by the method of moments. , 1973, Biophysical journal.