Verification of Functional A Posteriori Error Estimates for Obstacle Problem in 1D

We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value contains three unknown fields: a gradient field discretized by Raviart–Thomas elements, Lagrange multipliers field discretized by piecewise constant functions and a scalar parameter β. The minimization of the majorant value is realized by an alternate minimization algorithm, whose convergence is discussed. Numerical results validate two estimates, the energy estimate bounding the error of approximation in the energy norm by the difference of energies of discrete and exact solutions and the majorant estimate bounding the difference of energies of discrete and exact solutions by the value of the functional majorant.

[1]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[2]  J. Haslinger,et al.  Solution of Variational Inequalities in Mechanics , 1988 .

[3]  Zdenek Dostl Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities , 2009 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  W. Hager Review: R. Glowinski, J. L. Lions and R. Trémolières, Numerical analysis of variational inequalities , 1983 .

[6]  I. VÁŇOVÁ,et al.  Academy of Sciences of the Czech Republic , 2020, The Grants Register 2021.

[7]  Sergey I. Repin,et al.  Functional a posteriori error estimates for problems with nonlinear boundary conditions , 2008, J. Num. Math..

[8]  Sergey Repin,et al.  A posteriori error estimation for nonlinear variational problems by duality theory , 2000 .

[9]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[10]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[12]  D. Braess,et al.  A posteriori estimators for obstacle problems by the hypercircle method , 2008 .

[13]  M. Fuchs,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Computable a Posteriori Error Estimates for the Approximations of the Stresses in the Hencky Plasticity Problem , 2022 .

[14]  A simple proof of the regularity theorem for the variational inequality of the obstacle problem , 1986 .

[15]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error control for elliptic obstacle problems , 2003, Numerische Mathematik.

[16]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[17]  J. L. Lions,et al.  The Work of G. Stampacchia in Variational Inequalities , 2005 .

[18]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1978 .

[19]  Pekka Neittaanmäki,et al.  Reliable Methods for Computer Simulation: Error Control and a Posteriori Estimates , 2004 .

[20]  Sergey Repin,et al.  Estimates of Deviations from Exact Solutions of Elliptic Variational Inequalities , 2003 .

[21]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[22]  Sergey I. Repin,et al.  A posteriori error estimation for variational problems with uniformly convex functionals , 2000, Math. Comput..

[23]  Johannes Kraus,et al.  Algebraic multilevel iteration method for lowest order Raviart–Thomas space and applications , 2011 .

[24]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[25]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[26]  Carsten Carstensen,et al.  A posteriori error estimator competition for conforming obstacle problems , 2013 .

[27]  Talal Rahman,et al.  Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements , 2013, Appl. Math. Comput..

[28]  Jan Valdman,et al.  Minimization of Functional Majorant in a Posteriori Error Analysis Based on H(div) Multigrid-Preconditioned CG Method , 2009, Adv. Numer. Anal..

[29]  Andreas Veeser,et al.  Hierarchical error estimates for the energy functional in obstacle problems , 2011, Numerische Mathematik.

[30]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[31]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[32]  Jan Valdman,et al.  Verification of functional a posteriori error estimates for obstacle problem in 2D , 2013 .

[33]  Sergey Repin,et al.  Functional a posteriori error estimates for incremental models in elasto-plasticity , 2009 .

[34]  Anna Nagurney,et al.  Variational Inequalities , 2009, Encyclopedia of Optimization.

[35]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .