Machine Learning for Analyzing Malware

[1]  Yingxu Lai,et al.  A Feature Selection for Malicious Detection , 2008, 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing.

[2]  Aziz Mohaisen,et al.  Kindred domains: detecting and clustering botnet domains using DNS traffic , 2014, WWW.

[3]  Igor Santos,et al.  Opcode sequences as representation of executables for data-mining-based unknown malware detection , 2013, Inf. Sci..

[4]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[5]  Yuval Elovici,et al.  Unknown Malcode Detection Using OPCODE Representation , 2008, EuroISI.

[6]  Junfeng Wang,et al.  An unknown malware detection scheme based on the features of graph , 2013, Secur. Commun. Networks.

[7]  Ewa Niewiadomska-Szynkiewicz,et al.  FP-tree and SVM for Malicious Web Campaign Detection , 2015, ACIIDS.

[8]  Md. Rafiqul Islam,et al.  An automated classification system based on the strings of trojan and virus families , 2009, 2009 4th International Conference on Malicious and Unwanted Software (MALWARE).

[9]  Daniel Bilar,et al.  Opcodes as predictor for malware , 2007, Int. J. Electron. Secur. Digit. Forensics.

[10]  Salvatore J. Stolfo,et al.  Data mining methods for detection of new malicious executables , 2001, Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001.

[11]  Lorenzo Martignoni,et al.  FluXOR: Detecting and Monitoring Fast-Flux Service Networks , 2008, DIMVA.

[12]  Sun Le-chang,et al.  Malicious Behavior Detection Method Based on Sequential Pattern Discovery , 2011 .

[13]  W. B. Cavnar,et al.  N-gram-based text categorization , 1994 .

[14]  Radu Popescu-Zeletin,et al.  Email worm detection by wavelet analysis of DNS query streams , 2009, 2009 IEEE Symposium on Computational Intelligence in Cyber Security.

[15]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[16]  Chen Chao New Malicious Executables Detection Based on Association Rules , 2008 .

[17]  Xu Yu-fen Application of C4.5 Algorithm in Unknown Malicious Code Identification , 2013 .

[18]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[19]  Daniel Neagu,et al.  Using random forest and decision tree models for a new vehicle prediction approach in computational toxicology , 2016, Soft Comput..

[20]  Yulong Wang,et al.  Malicious code forensics based on data mining , 2013, 2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

[21]  Yoseba K. Penya,et al.  Idea: Opcode-Sequence-Based Malware Detection , 2010, ESSoS.

[22]  Stefano Zanero,et al.  Phoenix: DGA-Based Botnet Tracking and Intelligence , 2014, DIMVA.

[23]  Feng Shao Research and application of DBSCAN clustering algorithm based on density , 2007 .

[24]  Marcus A. Maloof,et al.  Learning to Detect and Classify Malicious Executables in the Wild , 2006, J. Mach. Learn. Res..

[25]  Joohan Lee,et al.  Data mining methods for malware detection using instruction sequences , 2008 .

[26]  Olawale Surajudeen Adebayo,et al.  Android malware classification using static code analysis and Apriori algorithm improved with particle swarm optimization , 2014, 2014 4th World Congress on Information and Communication Technologies (WICT 2014).

[27]  B. Wu,et al.  Detecting APT Malware Infections Based on Malicious DNS and Traffic Analysis , 2015, IEEE Access.

[28]  Armin Eberlein,et al.  Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing , 2009, Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing.

[29]  Roberto Perdisci,et al.  Early Detection of Malicious Flux Networks via Large-Scale Passive DNS Traffic Analysis , 2012, IEEE Transactions on Dependable and Secure Computing.

[30]  Minaxi Gupta,et al.  Phishing Infrastructure Fluxes All the Way , 2009, IEEE Security & Privacy.

[31]  Dimitris Gritzalis,et al.  Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software , 2012, Comput. Secur..

[32]  Yuval Elovici,et al.  Detecting unknown malicious code by applying classification techniques on OpCode patterns , 2012, Security Informatics.

[33]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[34]  王文槿,刘宝旭 Association Rule - Based Network Intrusion Detection System , 2015 .

[35]  Zhuo Li A Text Classification Method for Chinese Pornographic Web Recognition , 2011 .

[36]  Andrew Walenstein,et al.  Malware phylogeny generation using permutations of code , 2005, Journal in Computer Virology.

[37]  Kuinam J. Kim,et al.  A Study on Malicious Codes Pattern Analysis Using Visualization , 2011, 2011 International Conference on Information Science and Applications.

[38]  Vivek Jaglan,et al.  Web Information Retrieval , 2013 .

[39]  Sanjay Kumar Sahay,et al.  Grouping the executables to detect malware with high accuracy , 2016, ArXiv.

[40]  Roberto Perdisci,et al.  From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware , 2012, USENIX Security Symposium.

[41]  Bo Zhang,et al.  Fast-Flux Botnet Detection Based on Weighted SVM , 2012 .

[42]  Wenke Lee,et al.  Classification of packed executables for accurate computer virus detection , 2008, Pattern Recognit. Lett..

[43]  Felix C. Freiling,et al.  On Botnets That Use DNS for Command and Control , 2011, 2011 Seventh European Conference on Computer Network Defense.

[44]  Andrew Honig,et al.  Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software , 2012 .

[45]  Zhang Li-hong,et al.  Malicious URL prediction based on community detection , 2015, 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC).

[46]  Yibin Zhang,et al.  A fast malware detection algorithm based on objective-oriented association mining , 2013, Comput. Secur..

[47]  Yin Baolin,et al.  Malware Classification Approach Based on Valid Window and Naive Bayes , 2014 .

[48]  Yi-Bin Lu,et al.  Using Multi-Feature and Classifier Ensembles to Improve Malware Detection , 2010 .

[49]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[50]  Qian Yucu Homology analysis of malicious code and family clustering , 2015 .

[51]  Juha Karhunen,et al.  Efficient Detection of Zero-day Android Malware Using Normalized Bernoulli Naive Bayes , 2015, 2015 IEEE Trustcom/BigDataSE/ISPA.

[52]  Wenjia Li,et al.  Detecting Malware for Android Platform: An SVM-Based Approach , 2015, 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing.

[53]  S. Appavu alias Balamurugan,et al.  Association Rule Mining for Suspicious Email Detection: A Data Mining Approach , 2007, 2007 IEEE Intelligence and Security Informatics.

[54]  Li Deng,et al.  基于数据挖掘的恶意代码检测综述 (Review of Malware Detection Based on Data Mining) , 2016, 计算机科学.

[55]  Mamoun Alazab,et al.  Profiling and classifying the behavior of malicious codes , 2015, J. Syst. Softw..

[56]  Sun Yue-heng Research on text hierarchical clustering algorithm based on K-Means , 2005 .

[57]  Roberto Perdisci,et al.  Scalable fine-grained behavioral clustering of HTTP-based malware , 2013, Comput. Networks.