A fractal expansion of a three dimensional elastic–plastic multi-scale rough surface contact model

Abstract This work presents a fractal contact model for nominally flat rough surfaces and its analytical solution. Based on the non-statistical multi-scale model of Jackson and Streator, the model investigates the resolution-dependent contact area. A hierarchy of scales is constructed from a fractal surface description, based on the power spectral density of the surface roughness. In contrast to other fractal contact models, the concept of asperities is retained. Elasto-plastic deformation effects are included by virtue of an appropriate asperity model. The analytical solution yields a concise description of the resolution-dependent progression of fractal contact, decoupling the asperity physics from texture influence.

[1]  I. Etsion,et al.  Jump-in induced plastic yield onset of approaching microcontacts in the presence of adhesion , 2008 .

[2]  Michele Ciavarella,et al.  Elastic Multiscale Contact of Rough Surfaces: Archard’s Model Revisited and Comparisons With Modern Fractal Models , 2001 .

[3]  B. Persson Contact mechanics for randomly rough surfaces , 2006, cond-mat/0603807.

[4]  M. Longuet-Higgins Statistical properties of an isotropic random surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  Hertz On the Contact of Elastic Solids , 1882 .

[6]  Takahisa Kato,et al.  An FFT-Based Method for Rough Surface Contact , 1997 .

[7]  Michele Ciavarella,et al.  Incipient sliding of rough surfaces in contact: a multiscale numerical analysis , 2001 .

[8]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[9]  I. Green,et al.  A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat , 2005 .

[10]  Robert L. Jackson,et al.  A Multi-Scale Model for Contact Between Rough Surfaces , 2006 .

[11]  Yong Hoon Jang,et al.  Linear elastic contact of the Weierstrass profile† , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[13]  T. L. Warren,et al.  Random Cantor set models for the elastic-perfectly plastic contact of rough surfaces , 1996 .

[14]  A. Bower,et al.  The behavior of an elastic–perfectly plastic sinusoidal surface under contact loading , 2006 .

[15]  I. Etsion,et al.  Loading-unloading of an elastic-plastic adhesive spherical microcontact. , 2008, Journal of colloid and interface science.

[16]  R. D. Gibson,et al.  The elastic contact of a rough surface , 1975 .

[17]  J. Molinari,et al.  Finite-element analysis of contact between elastic self-affine surfaces. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Joseph R. Davis,et al.  Welding, brazing, and soldering , 1993 .

[19]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[20]  P. Nayak,et al.  Random Process Model of Rough Surfaces , 1971 .

[21]  M. Ciavarella,et al.  On the elastic contact of rough surfaces : Numerical experiments and comparisons with recent theories , 2006 .

[22]  Thomas Farris,et al.  Spectral Analysis of Two-Dimensional Contact Problems , 1996 .

[23]  B. Bhushan,et al.  Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces , 1990 .

[24]  Chung-Jen Lu,et al.  Coefficients of Restitution Based on a Fractal Surface Model , 2003 .

[25]  J. Archard Elastic deformation and the laws of friction , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  Marco Paggi,et al.  On the resolution dependence of micromechanical contact models , 2007 .

[27]  B. Persson,et al.  A multiscale molecular dynamics approach to contact mechanics , 2005, cond-mat/0508264.

[28]  W. E. Wilson,et al.  The pressure to cause complete contact between elastic—plastic sinusoidal surfaces , 2008 .

[29]  B. Mikic,et al.  THERMAL CONTACT CONDUCTANCE; THEORETICAL CONSIDERATIONS , 1974 .

[30]  Yahav Morag,et al.  Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces , 2007 .

[31]  R. Jackson,et al.  A Multiscale Model of Thermal Contact Resistance Between Rough Surfaces , 2008 .

[32]  B. Persson Theory of rubber friction and contact mechanics , 2001 .

[33]  B. Persson Elastoplastic contact between randomly rough surfaces. , 2001, Physical review letters.

[34]  John I. McCool,et al.  Comparison of models for the contact of rough surfaces , 1986 .

[35]  Kai Willner,et al.  Elasto-Plastic Normal Contact of Three-Dimensional Fractal Surfaces Using Halfspace Theory , 2004 .

[36]  A. Goedecke,et al.  Creep Relaxation of an Elastic–Perfectly Plastic Hemisphere in Fully Plastic Contact , 2009 .

[37]  B. Persson,et al.  Elastic contact between randomly rough surfaces: Comparison of theory with numerical results , 2002 .

[38]  Itzhak Green,et al.  Finite Element Analysis of Electromagnetic Effects on Hemispherical Contacts , 2008 .

[39]  A. Bower,et al.  Elastic–plastic contact of a rough surface with Weierstrass profile , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  A. Volokitin,et al.  On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  Mark O. Robbins,et al.  Finite element modeling of elasto-plastic contact between rough surfaces , 2005 .