Sulphide GaxGe25−xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguides

We report the fabrication and the physical and optical characterizations of sulphide GaxGe25−xSb10S65(x=0,5) rib waveguides. High quality films fabricated on SiO2/Si wafer substrates were obtained using the sputtering magnetron rf deposition method. The slab waveguides obtained without annealing present propagation losses of about 0.6 dB/cm at 1550 nm. These optical losses are not important for implementation in optical devices based on silicon-on-insulator or polymer, for instance, atomic force microscopy measurements revealed low interface roughness between the different media (substrate/film and film/air). Reactive ion etching was used to pattern rib waveguides between 2 and 300 µm wide. The parameters were optimized to obtain a dry etching process that had low surface roughness, vertical sidewalls, etch depth of more than 1 µm, and reasonable etching rate. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films. Their optical transmission was demonstrated by optical near field of guided modes and optical losses were measured and discussed.

[1]  Virginie Nazabal,et al.  Dysprosium doped amorphous chalcogenide films prepared by pulsed laser deposition , 2006 .

[2]  Barry Luther-Davies,et al.  Integrated all-optical pulse regenerator in chalcogenide waveguides. , 2005, Optics letters.

[3]  Barry Luther-Davies,et al.  Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching. , 2004, Optics express.

[4]  B. Eggleton,et al.  Sampled Bragg gratings in chalcogenide (As(2)S(3)) rib-waveguides. , 2006, Optics express.

[5]  Christos Riziotis,et al.  Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification , 2002 .

[6]  V. G. Truong,et al.  Optical properties of thulium-doped chalcogenide glasses and the uncertainty of the calculated radiative lifetimes using the Judd-Ofelt approach , 2006 .

[7]  Johann Troles,et al.  Nonlinear optical properties of chalcogenide glasses: comparison between Mach–Zehnder interferometry and Z-scan techniques , 2001 .

[8]  L. Brilland,et al.  Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm , 2008 .

[9]  Joseph Irudayaraj,et al.  Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films. , 2006, Analytical chemistry.

[10]  Steve Madden,et al.  Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam. , 2005, Optics express.

[11]  Jean-Luc Adam,et al.  Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions , 1999 .

[12]  Kathleen Richardson,et al.  High photoluminescence in erbium-doped chalcogenide thin films , 2000 .

[13]  Kathleen Richardson,et al.  Non-linear optical properties of chalcogenide glasses in the system As–S–Se , 1999 .

[14]  P. Tien Light waves in thin films and integrated optics. , 1971, Applied optics.

[15]  B. Luther-Davies,et al.  Photosensitive post-tuning of chalcogenide photonic crystal waveguides , 2007, COIN-ACOFT 2007 - Joint International Conference on the Optical Internet and the 32nd Australian Conference on Optical Fibre Technology.

[16]  Y. Okamura,et al.  Simple method of measuring propagation properties of integrated optical waveguides: an improvement. , 1985, Applied optics.

[17]  S. A. Fayek,et al.  Optical properties of amorphous Ge28-xSe72Sbx thin films , 2006 .

[18]  David N. Payne,et al.  Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass , 1997 .

[19]  Joël Charrier,et al.  Optical loss study of porous silicon and oxidized porous silicon planar waveguides , 2007 .

[20]  Steve Madden,et al.  Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides , 2007 .

[21]  E. Bonhomme,et al.  Transmission measurement at 10.6μm of Te2As3Se5 rib waveguides on As2S3 substrate , 2007 .

[22]  Barry Luther-Davies,et al.  Low-loss Waveguides in Ultrafast Laser-deposited As 2 S 3 Chalcogenide Films , 2003 .

[23]  Safa Kasap,et al.  PHOTOLUMINESCENCE IN Er-IMPLANTED AMORPHOUS Ge-S-Ga THIN FILMS , 2005 .

[24]  Daniel W. Hewak,et al.  Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass , 2002 .

[25]  Kathleen Richardson,et al.  Luminescence from neodymium-ion-implanted As 2 S 3 waveguides , 1998 .

[26]  Virginie Nazabal,et al.  High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling. , 2006, Optics express.

[27]  George I. Stegeman,et al.  Second-order nonlinear susceptibility in As/sub 2/S/sub 3/ chalcogenide thin glass films , 2000 .

[28]  Kathleen Richardson,et al.  Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. , 2007, Optics express.

[29]  Peter Ewen,et al.  Controlling the optical constants of thermally-evaporated Ge10Sb30S60 chalcogenide glass films by photodoping with silver , 2000 .

[30]  Virginie Nazabal,et al.  Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy , 2008 .

[31]  Olivier Joubert,et al.  Fluorocarbon high‐density plasmas. II. Silicon dioxide and silicon etching using CF4 and CHF3 , 1994 .

[32]  Houizot Patrick,et al.  Selenide glass single mode optical fiber for nonlinear optics , 2007 .

[33]  Sophie LaRochelle,et al.  First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses , 1999 .

[34]  Annie Pradel,et al.  Chalcogenide glass-based rib ARROW waveguide , 2003 .

[35]  Petr Nemec,et al.  Thin chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors , 2006 .

[36]  Barry Luther-Davies,et al.  Dry-etch of As2S3 thin films for optical waveguide fabrication , 2005 .

[37]  S. G. Bishop,et al.  Photoinduced integrated-optic devices in rapid thermally annealed chalcogenide glasses , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  Daniel W. Hewak,et al.  High-purity germanium-sulphide glass for optoelectronic applications synthesised by chemical vapour deposition , 2004 .

[39]  Weisheng Hu,et al.  Compact waveguide splitter networks. , 2008, Optics express.

[40]  Leslie Brandon Shaw,et al.  Sputtered films of Er 3+-doped gallium lanthanum sulfide glass , 2006 .

[41]  Y. Okamura,et al.  Measuring mode propagation losses of integrated optical waveguides: a simple method. , 1983, Applied optics.

[42]  Robert W. Eason,et al.  Pulsed laser deposition of Ga‐La‐S chalcogenide glass thin film optical waveguides , 1993 .

[43]  Masaki Asobe,et al.  Efficient and ultrafast all-optical switching using high Delta n, small core chalcogenide glass fibre , 1993 .

[44]  Virginie Nazabal,et al.  Chalcogenide Glasses Based on Germanium Disulfide for Second Harmonic Generation , 2007 .

[45]  Ishwar D. Aggarwal,et al.  Fabrication of waveguides in sputtered films of GeAsSe glass via photodarkening with above bandgap light , 2004 .