Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM

Averaging techniques are popular tools in adaptive finite element methods for the numerical treatment of second order partial differential equations since they provide efficient a posteriori error estimates by a simple postprocessing. In this paper, their reliablility is shown for conforming, nonconforming, and mixed low order finite element methods in a model situation: the Laplace equation with mixed boundary conditions. Emphasis is on possibly unstructured grids, nonsmoothness of exact solutions, and a wide class of averaging techniques. Theoretical and numerical evidence supports that the reliability is up to the smoothness of given right-hand sides.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Gabriel Wittum,et al.  Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..

[3]  Ronald H. W. Hoppe,et al.  Element oriented and edge oriented local error estimators for nonconforming finite element methods , 1992, Forschungsberichte, TU Munich.

[4]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[5]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[6]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[7]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[8]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[9]  Guido Kanschat,et al.  A posteriori error estimates¶for nonconforming finite element schemes , 1999 .

[10]  Rodolfo Rodríguez A Posteriori Error Analysis in the Finite Element Method , 1994 .

[11]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part II: λ-independent estimates , 2001 .

[12]  Carsten Carstensen,et al.  Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.

[13]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[14]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[15]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[16]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[17]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[18]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[19]  Dietrich Braess,et al.  A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .

[20]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[21]  A. Alonso Error estimators for a mixed method , 1996 .

[22]  G. Fix Review: Philippe G. Ciarlet, The finite element method for elliptic problems , 1979 .

[23]  Carsten Carstensen,et al.  Averaging technique for a posteriori error control in elasticity. Part III: Locking-free nonconforming FEM , 2001 .

[24]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[25]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[26]  Carsten Carstensen,et al.  A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..

[27]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[28]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[29]  Ricardo G. Durán,et al.  On the asymptotic exactness of error estimators for linear triangular finite elements , 1991 .

[30]  R. Durán,et al.  A posteriori error estimators for nonconforming finite element methods , 1996 .

[31]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[32]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .