Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM
暂无分享,去创建一个
[1] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[2] Gabriel Wittum,et al. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..
[3] Ronald H. W. Hoppe,et al. Element oriented and edge oriented local error estimators for nonconforming finite element methods , 1992, Forschungsberichte, TU Munich.
[4] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[5] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[6] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .
[7] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[8] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[9] Guido Kanschat,et al. A posteriori error estimates¶for nonconforming finite element schemes , 1999 .
[10] Rodolfo Rodríguez. A Posteriori Error Analysis in the Finite Element Method , 1994 .
[11] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part II: λ-independent estimates , 2001 .
[12] Carsten Carstensen,et al. Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.
[13] R. Verfürth,et al. Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .
[14] R. Rodríguez. Some remarks on Zienkiewicz‐Zhu estimator , 1994 .
[15] Carsten Carstensen,et al. A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..
[16] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[17] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[18] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[19] Dietrich Braess,et al. A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .
[20] C. Carstensen,et al. Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .
[21] A. Alonso. Error estimators for a mixed method , 1996 .
[22] G. Fix. Review: Philippe G. Ciarlet, The finite element method for elliptic problems , 1979 .
[23] Carsten Carstensen,et al. Averaging technique for a posteriori error control in elasticity. Part III: Locking-free nonconforming FEM , 2001 .
[24] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[25] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[26] Carsten Carstensen,et al. A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..
[27] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[28] C. Carstensen. QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .
[29] Ricardo G. Durán,et al. On the asymptotic exactness of error estimators for linear triangular finite elements , 1991 .
[30] R. Durán,et al. A posteriori error estimators for nonconforming finite element methods , 1996 .
[31] Ivo Babuška,et al. Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .
[32] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .