Heteroclinic Solutions in Singularly Perturbed Discontinuous Differential Equations

We derive Melnikov type conditions for the persistence of heteroclinic solutions in perturbed slowly varying discontinuous differential equations extending to these equations similar results for continuous differential equations.

[1]  Michal Feckan,et al.  Correction to: Periodic Solutions in Slowly Varying Discontinuous Differential Equations: A Non-Generic Case , 2023, Journal of Dynamics and Differential Equations.

[2]  Владимир Игоревич Усков Asymptotic expansions of solutions of singularly perturbed equations , 2022, Herald of Tver State University. Series: Applied Mathematics.

[3]  Michal Feckan,et al.  Periodic Solutions in Slowly Varying Discontinuous Differential Equations: The Generic Case , 2021, Mathematics.

[4]  Michal Fečkan,et al.  On the Poincaré-Adronov-Melnikov method for the existence of grazing impact periodic solutions of differential equations , 2020 .

[5]  Jonas Gloeckner,et al.  Impulsive Differential Equations , 2016 .

[6]  F. Battelli,et al.  Chaos in forced impact systems , 2012 .

[7]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[8]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[9]  Celso Grebogi,et al.  The limit case response of the archetypal oscillator for smooth and discontinuous dynamics , 2008 .

[10]  Michal Fečkan,et al.  Homoclinic Trajectories in Discontinuous Systems , 2008 .

[11]  K. Palmer,et al.  Heteroclinic connections in singularly perturbed systems , 2008 .

[12]  Nathan van de Wouw,et al.  Non-smooth Dynamical Systems , 2008 .

[13]  Celso Grebogi,et al.  Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Jan Awrejcewicz,et al.  Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods , 2007 .

[15]  Celso Grebogi,et al.  Archetypal oscillator for smooth and discontinuous dynamics. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  H. Nijmeijer,et al.  Dynamics and Bifurcations ofNon - Smooth Mechanical Systems , 2006 .

[17]  K. Palmer,et al.  Singular Perturbations, Transversality, and Sil'nikov Saddle-Focus Homoclinic Orbits , 2003 .

[18]  Fotios Giannakopoulos,et al.  Planar systems of piecewise linear differential equations with a line of discontinuity , 2001 .

[19]  G. Haller,et al.  Chaos near resonance , 1999 .

[20]  S. Pilyugin Shadowing in dynamical systems , 1999 .

[21]  Michal Feckan,et al.  Global center manifolds in singular systems , 1996 .

[22]  Leonid V. Kalachev,et al.  The Boundary Function Method for Singular Perturbation Problems , 1995 .

[23]  F. Battelli Heteroclinic orbits in singular systems: A unifying approach , 1994 .

[24]  G. Kovačič Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems , 1993 .

[25]  F. Battelli,et al.  Heteroclinic Orbits in Systems with Slowly Varying Coefficients , 1993 .

[26]  Kenneth J. Palmer,et al.  Chaos in the Duffing Equation , 1993 .

[27]  Peter Szmolyan,et al.  Transversal heteroclinic and homoclinic orbits in singular perturbation problems , 1991 .

[28]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[29]  Kunimochi Sakamoto,et al.  Invariant manifolds in singular perturbation problems for ordinary differential equations , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[30]  M. Levi,et al.  Dynamical systems approaches to nonlinear problems in systems and circuits , 1988 .

[31]  Philip Holmes,et al.  Periodic orbits in slowly varying oscillators , 1987 .

[32]  Philip Holmes,et al.  Homoclinic orbits in slowly varying oscillators , 1987 .

[33]  BY A. ERDÉLYI,et al.  Singular perturbations , 1986, IEEE Control Systems Magazine.

[34]  Kenneth J. Palmer,et al.  Exponential dichotomies and transversal homoclinic points , 1984 .

[35]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[36]  F. Hoppensteadt Properties of solutions of ordinary differential equations with small parameters , 1971 .

[37]  W. A. Coppel Dichotomies and stability theory , 1971 .

[38]  F. Hoppensteadt Singular perturbations on the infinite interval , 1966 .