Black silicon with nanostructured surface formed by low energy helium plasma irradiation

[1]  Chia-Yun Chen,et al.  18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact , 2019, Applied Surface Science.

[2]  Chaobo Li,et al.  Effect of concentration on the position of fluorescence peak based on black-silicon SERS substrate , 2019, Applied Surface Science.

[3]  D. Pudiš,et al.  Angle- and polarization resolved antireflection properties of black silicon prepared by electrochemical etching supported by external electric field , 2018, Applied Surface Science.

[4]  Hikaru Kobayashi,et al.  Surface nanocrystalline Si structure and its surface passivation for highly efficient black Si solar cells , 2017 .

[5]  S. Takamura,et al.  A Particle-In-Cell approach to particle flux shaping with a surface mask , 2017 .

[6]  Kohei Yamada,et al.  Nanostructure formation on silicon surfaces by using low energy helium plasma exposure , 2016 .

[7]  N. Bernhard,et al.  Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells , 2016 .

[8]  Shuichi Takamura,et al.  Experimental identification for physical mechanism of fiber-form nanostructure growth on metal surfaces with helium plasma irradiation , 2015 .

[9]  S. Noda,et al.  Photonic crystal microcrystalline silicon solar cells , 2015 .

[10]  S. Takamura Radiative cooling properties of He-defected tungsten with fiber-form nanostructured surface , 2015 .

[11]  Hele Savin,et al.  High‐efficiency black silicon interdigitated back contacted solar cells on p‐type and n‐type c‐Si substrates , 2015 .

[12]  S. Krasheninnikov,et al.  Atomistic modeling of growth and coalescence of helium nano-bubbles in tungsten , 2015 .

[13]  Hele Savin,et al.  Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. , 2015, Nature nanotechnology.

[14]  Shuichi Takamura,et al.  Molecular dynamics and Monte Carlo hybrid simulation for fuzzy tungsten nanostructure formation , 2015 .

[15]  S. Krasheninnikov,et al.  He cluster dynamics in fusion related plasma facing materials , 2015 .

[16]  B. Hoex,et al.  Black silicon: fabrication methods, properties and solar energy applications , 2014 .

[17]  Yiming Zhu,et al.  Control carrier recombination of multi-scale textured black silicon surface for high performance solar cells , 2014 .

[18]  Y. M. Zhu,et al.  Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon , 2014 .

[19]  S. Takamura Initial Stage of Fiber-Form Nanostructure Growth on Refractory Metal Surfaces with Helium Plasma Irradiation , 2014 .

[20]  S. Adachi,et al.  Optical properties of “black silicon” formed by catalytic etching of Au/Si(100) wafers , 2013 .

[21]  S. Takamura Characteristics of the compact plasma device AIT‐PID with multicusp magnetic confinement , 2012 .

[22]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[23]  Sailing He,et al.  Black silicon with controllable macropore array for enhanced photoelectrochemical performance , 2012 .

[24]  André Authier,et al.  Optical properties of X-rays--dynamical diffraction. , 2012, Acta crystallographica. Section A, Foundations of crystallography.

[25]  S. Krasheninnikov Viscoelastic model of tungsten ‘fuzz’ growth , 2011 .

[26]  A. Authier Optical properties of X-rays – dynamical diffraction , 2011 .

[27]  Paul Stradins,et al.  Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules , 2009 .

[28]  Ernst-Bernhard Kley,et al.  Terahertz emission from black silicon , 2008 .

[29]  R. Doerner,et al.  Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions , 2008 .

[30]  W. Chan,et al.  Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering , 2007 .

[31]  S. Samukawa Ultimate Top-down Etching Processes for Future Nanoscale Devices: Advanced Neutral-Beam Etching , 2006, 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings.

[32]  S. Takamura,et al.  Formation of Nanostructured Tungsten with Arborescent Shape due to Helium Plasma Irradiation , 2006 .

[33]  N. Sugimoto,et al.  Control of shape of silicon needles fabricated by highly selective anisotropic dry etching , 2002 .

[34]  T. Kanashima,et al.  Photoreflectance characterization of the plasma-induced damage in Si substrate , 2000 .