Standing wave plasmon modes interact in an antenna-coupled nanowire.

In a standing wave optical cavity, the coupling of cavity modes, for example, through a nonlinear medium, results in a rich variety of nonlinear dynamical phenomena, such as frequency pushing and pulling, mode-locking and pulsing, modal instabilities, even complex chaotic behavior. Metallic nanowires of finite length support a hierarchy of longitudinal surface plasmon modes with standing wave properties: the plasmonic analog of a Fabry-Pérot cavity. Here we show that positioning the nanowire within the gap of a plasmonic nanoantenna introduces a passive, hybridization-based coupling of the standing-wave nanowire plasmon modes with the antenna structure, mediating an interaction between the nanowire plasmon modes themselves. Frequency pushing and pulling, and the enhancement and suppression of specific plasmon modes, can be controlled and manipulated by nanoantenna position and shape.

[1]  Younan Xia,et al.  Observation of plasmon propagation, redirection, and fan-out in silver nanowires. , 2006, Nano letters.

[2]  Hong Wei,et al.  Cascaded logic gates in nanophotonic plasmon networks , 2011, Nature communications.

[3]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[4]  Albert Polman,et al.  Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence. , 2011, Nano letters.

[5]  L. Casperson Spontaneous coherent pulsations in laser oscillators , 1978 .

[6]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[7]  L. Casperson Spontaneous pulsations in lasers , 1983 .

[8]  Xiaorui Tian,et al.  Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. , 2011, Nano letters.

[9]  Pierre-Michel Adam,et al.  Short range plasmon resonators probed by photoemission electron microscopy. , 2008, Nano letters.

[10]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[11]  Xiaorui Tian,et al.  Highly tunable propagating surface plasmons on supported silver nanowires , 2013, Proceedings of the National Academy of Sciences.

[12]  W. Lamb Theory of an optical maser , 1964 .

[13]  H. Gibbs Optical Bistability Controlling Light With Light , 1985 .

[14]  Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas. , 2012, ACS nano.

[15]  Carsten Rockstuhl,et al.  Plasmonic nanowire antennas: experiment, simulation, and theory. , 2010, Nano letters.

[16]  Peter Nordlander,et al.  Plasmon hybridization in nanorod dimers , 2008 .

[17]  Qing Yang,et al.  Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. , 2009, Nano letters.

[18]  Harry A. Atwater,et al.  Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence , 2009 .

[19]  R. S. Gioggia,et al.  Experimental evidence for self-pulsing and chaos in CW-excited lasers , 1983 .

[20]  Harald Ditlbacher,et al.  Plasmon dispersion relation of Au and Ag nanowires , 2003 .

[21]  J. W. Bennett,et al.  Hole Burning Effects in a He-Ne Optical Maser , 1962 .

[22]  A. Polman,et al.  Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy. , 2007, Nano letters.

[23]  H. Gibbs,et al.  Observation of chaos in optical bistability (A) , 1981 .

[24]  Erik Dujardin,et al.  Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms. , 2013, Nature materials.

[25]  Carsten Rockstuhl,et al.  Fabry-Pérot resonances in one-dimensional plasmonic nanostructures. , 2009, Nano letters.

[26]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[27]  F. J. García de abajo,et al.  Probing the photonic local density of states with electron energy loss spectroscopy. , 2007, Physical review letters.

[28]  Gianluigi A. Botton,et al.  Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. , 2011, Nano letters.

[29]  A. Polman,et al.  Modal decomposition of surface--plasmon whispering gallery resonators. , 2009, Nano letters.

[30]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[31]  Martijn Wubs,et al.  Surface plasmon modes of a single silver nanorod: an electron energy loss study. , 2011, Optics express.

[32]  J. Aizpurua,et al.  Plasmonic excitation and manipulation with an electron beam , 2012 .

[33]  Mark L Brongersma,et al.  Spectral properties of plasmonic resonator antennas. , 2008, Optics express.

[34]  S. N. Liu,et al.  Route to mode locking in a three-mode He-Ne 3.39-μm laser including chaos in the secondary beat frequency , 1983 .

[35]  Yingzhou Huang,et al.  Branched silver nanowires as controllable plasmon routers. , 2010, Nano letters.

[36]  Fernando D Stefani,et al.  Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes. , 2011, Nano letters.

[37]  Naoki Yamamoto,et al.  Mapping plasmons in nanoantennas via cathodoluminescence , 2008 .

[38]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[39]  K. Ikeda,et al.  Optical Turbulence: Chaotic Behavior of Transmitted Light from a Ring Cavity , 1980 .

[40]  Hong Wei,et al.  Chiral surface plasmon polaritons on metallic nanowires. , 2011, Physical review letters.