lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain

We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method.

[1]  Rachid Deriche,et al.  Multiple q-shell diffusion propagator imaging , 2011, Medical Image Anal..

[2]  Paul M. Thompson,et al.  HARDI Denoising: Variational Regularization of the Spherical Apparent Diffusion Coefficient sADC , 2009, IPMI.

[3]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[4]  Derek K. Jones,et al.  Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging , 2013, Human brain mapping.

[5]  D. Louis Collins,et al.  Robust Rician noise estimation for MR images , 2010, Medical Image Anal..

[6]  Fang-Cheng Yeh,et al.  NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction , 2011, NeuroImage.

[7]  P. Basser,et al.  Parametric and non-parametric statistical analysis of DT-MRI data. , 2003, Journal of magnetic resonance.

[8]  J. E. Tanner Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient , 1978 .

[9]  Heidi Johansen-Berg,et al.  Diffusion MRI at 25: Exploring brain tissue structure and function , 2012, NeuroImage.

[10]  Robert D. Nowak,et al.  Wavelet-based Rician noise removal for magnetic resonance imaging , 1999, IEEE Trans. Image Process..

[11]  Rachid Deriche,et al.  Optimal real-time Q-ball imaging using regularized Kalman filtering with incremental orientation sets , 2009, Medical Image Anal..

[12]  Daniel C Alexander,et al.  Optimal acquisition orders of diffusion‐weighted MRI measurements , 2007, Journal of magnetic resonance imaging : JMRI.

[13]  A. Connelly,et al.  Determination of the appropriate b value and number of gradient directions for high‐angular‐resolution diffusion‐weighted imaging , 2013, NMR in biomedicine.

[14]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[15]  Maxime Descoteaux,et al.  Dipy, a library for the analysis of diffusion MRI data , 2014, Front. Neuroinform..

[16]  Viktor Vegh,et al.  Periodic sampling in the gradient direction domain facilitates noise reduction in diffusion weighted imaging , 2012 .

[17]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[18]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[19]  Karl Krissian,et al.  Noise-Driven Anisotropic Diffusion Filtering of MRI , 2009, IEEE Transactions on Image Processing.

[20]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[21]  Stuart Crozier,et al.  Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images , 2012, NeuroImage.

[22]  Ross T. Whitaker,et al.  Rician Noise Removal in Diffusion Tensor MRI , 2006, MICCAI.

[23]  Pierrick Coupé,et al.  Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising , 2012 .

[24]  Timothy Edward John Behrens,et al.  The CONNECT project: Combining macro- and micro-structure , 2013, NeuroImage.

[25]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[26]  V. Wedeen,et al.  Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo , 2003, Magnetic resonance in medicine.

[27]  Mara Cercignani,et al.  Twenty‐five pitfalls in the analysis of diffusion MRI data , 2010, NMR in biomedicine.

[28]  Cheng Guan Koay,et al.  Analytically exact spiral scheme for generating uniformly distributed points on the unit sphere , 2011, J. Comput. Sci..

[29]  Alexander Leemans,et al.  The B‐matrix must be rotated when correcting for subject motion in DTI data , 2009, Magnetic resonance in medicine.

[30]  Christophe Lenglet,et al.  A variational model for denoising high angular resolution diffusion imaging , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[31]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[32]  Rachid Deriche,et al.  Quantitative Comparison of Reconstruction Methods for Intra-Voxel Fiber Recovery From Diffusion MRI , 2014, IEEE Transactions on Medical Imaging.

[33]  Pierrick Coupé,et al.  Non-Local Means Variants for Denoising of Diffusion-Weighted and Diffusion Tensor MRI , 2007, MICCAI.

[34]  Enmin Song,et al.  Denoising 3D MR images by the enhanced non-local means filter for Rician noise. , 2010, Magnetic resonance imaging.

[35]  Rachid Deriche,et al.  Impact of Rician Adapted Non-Local Means Filtering on HARDI , 2008, MICCAI.

[36]  Carlo Pierpaoli,et al.  Artifacts in Diffusion MRI , 2010 .

[37]  Sinisa Pajevic Statistical Issues in Diffusion Tensor MRI , 2010 .

[38]  Stuart Crozier,et al.  Denoising of Dynamic Contrast-Enhanced MR Images Using Dynamic Nonlocal Means , 2010, IEEE Transactions on Medical Imaging.

[39]  Arthur W. Toga,et al.  Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: Application to normal elderly and Alzheimer's disease participants , 2009, NeuroImage.

[40]  Pierrick Coupé,et al.  An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images , 2008, IEEE Transactions on Medical Imaging.

[41]  D. Le Bihan,et al.  Artifacts and pitfalls in diffusion MRI , 2006, Journal of magnetic resonance imaging : JMRI.

[42]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[43]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[44]  Wanyu Liu,et al.  Structure-adaptive sparse denoising for diffusion-tensor MRI , 2013, Medical Image Anal..