Functionalization of perovskite thin films with moisture-tolerant molecules

[1]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[2]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[3]  Dae Ho Song,et al.  Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin‐Coating Process , 2014, Advanced materials.

[4]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[5]  Jin Zhai,et al.  A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. , 2004, Angewandte Chemie.

[6]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[7]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[8]  J. Dobson,et al.  Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. , 2014, Physical chemistry chemical physics : PCCP.

[9]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[10]  C. Forney,et al.  Control of Humidity in Small Controlled-environment Chambers using Glycerol-Water Solutions , 1992 .

[11]  O. Knop,et al.  Alkylammonium lead halides. Part 1. Isolated PbI64− ions in (CH3NH3)4PbI6•2H2O , 1987 .

[12]  I. Haller Covalently attached organic monolayers on semiconductor surfaces , 1978 .

[13]  C. Yuan,et al.  Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. , 2015, ACS applied materials & interfaces.

[14]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[15]  Bobby G. Sumpter,et al.  Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3 , 2015 .

[16]  Giovanni Bongiovanni,et al.  Correlated electron–hole plasma in organometal perovskites , 2014, Nature Communications.

[17]  Jon M. Azpiroz,et al.  Ab Initio Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water , 2015 .

[18]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[19]  M. Grätzel Dye-sensitized solar cells , 2003 .

[20]  Liyuan Han,et al.  Bifunctional alkyl chain barriers for efficient perovskite solar cells. , 2015, Chemical communications.

[21]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[22]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[23]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[24]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[25]  Kangning Liang,et al.  Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique , 1998 .

[26]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[27]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[28]  Xinjian Feng,et al.  Design and Creation of Superwetting/Antiwetting Surfaces , 2006 .

[29]  D. Ginger,et al.  Photodecomposition and Morphology Evolution of Organometal Halide Perovskite Solar Cells , 2015 .

[30]  Yun Wang,et al.  Formation Mechanism of Freestanding CH3NH3PbI3 Functional Crystals: In Situ Transformation vs Dissolution–Crystallization , 2014 .

[31]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[32]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[33]  David B. Mitzi,et al.  Solution-processed inorganic semiconductors , 2004 .

[34]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[35]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[36]  Tao Xu,et al.  Pseudohalide-induced moisture tolerance in perovskite CH3 NH3 Pb(SCN)2 I thin films. , 2015, Angewandte Chemie.

[37]  Blaise J. Thompson,et al.  Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. , 2015, Journal of the American Chemical Society.

[38]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[39]  David B. Mitzi,et al.  Templating and structural engineering in organic–inorganic perovskites , 2001 .

[40]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[41]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[42]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[43]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[44]  N. Park,et al.  15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 , 2015 .

[45]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[46]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[47]  L. Schmidt‐Mende,et al.  Porous and shape-anisotropic single crystals of the semiconductor perovskite CH3NH3PbI3 from a single-source precursor. , 2015, Angewandte Chemie.

[48]  Tomohiro Sato,et al.  1H and 19F NMR Study of the Counterion Effect on the Micellar Structures Formed by Tetraethylammonium and Lithium Perfluorooctylsulfonates. 2. Mixed Systems , 1999 .

[49]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[50]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[51]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.