Informative spectral bands for remote green LAI estimation in C3 and C4 crops

[1]  J. G. Lyon,et al.  Hyperspectral Vegetation Indices , 2016 .

[2]  Jan G. P. W. Clevers,et al.  Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review , 2015 .

[3]  T. Jarmer,et al.  Comparison of different regression models and validation techniques for the assessment of wheat leaf area index from hyperspectral data , 2015 .

[4]  Zhihao Qin,et al.  Estimation of Crop LAI using hyperspectral vegetation indices and a hybrid inversion method , 2015 .

[5]  James Hansen,et al.  Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study , 2015 .

[6]  Anatoly A. Gitelson,et al.  Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[7]  Bangqian Chen,et al.  Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network , 2015 .

[8]  José F. Moreno,et al.  rown and green LAI mapping through spectral indices , 2014 .

[9]  Reuben Nilus,et al.  The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate , 2015, Agricultural and forest meteorology.

[10]  A. Gitelson,et al.  Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm , 2014 .

[11]  Jing M. Chen,et al.  Continuous observation of leaf area index at Fluxnet-Canada sites , 2014 .

[12]  A. Gitelson,et al.  Near real-time prediction of U.S. corn yields based on time-series MODIS data , 2014 .

[13]  Anatoly A. Gitelson,et al.  Elements of an Integrated Phenotyping System for Monitoring Crop Status at Canopy Level , 2014 .

[14]  Bo-Hui Tang,et al.  Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[15]  Jan G. P. W. Clevers,et al.  Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[16]  Michael J. O. Pocock,et al.  The robustness of a network of ecological networks to habitat loss. , 2013, Ecology letters.

[17]  L. Alonso,et al.  A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems , 2013 .

[18]  Sharon Phillips,et al.  Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012 , 2012 .

[19]  A. Viña,et al.  Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity , 2012 .

[20]  E. Pattey,et al.  Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons , 2012 .

[21]  A. Gitelson,et al.  Remote estimation of crop gross primary production with Landsat data , 2012 .

[22]  C. Atzberger,et al.  Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery , 2012 .

[23]  Jan G. P. W. Clevers,et al.  Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[24]  Frédéric Baret,et al.  Forcing a wheat crop model with LAI data to access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach , 2012 .

[25]  A. Viña,et al.  Comparison of different vegetation indices for the remote assessment of green leaf area index of crops , 2011 .

[26]  A. Skidmore,et al.  Mapping grassland leaf area index with airborne hyperspectral imagery : a comparison study of statistical approaches and inversion of radiative transfer models , 2011 .

[27]  Michael E. Schaepman,et al.  Retrieval of foliar information about plant pigment systems from high resolution spectroscopy , 2009 .

[28]  A. Gitelson,et al.  Application of Spectral Remote Sensing for Agronomic Decisions , 2008 .

[29]  K. Soudani,et al.  Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass , 2008 .

[30]  W. Cai,et al.  A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra , 2008 .

[31]  Andrew E. Suyker,et al.  Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems , 2005 .

[32]  Anatoly A. Gitelson,et al.  Collecting Spectral Data over Cropland Vegetation Using Machine-Positioning versus Hand-Positioning of the Sensor , 2004 .

[33]  Richard G. Brereton,et al.  Chemometrics: Data Analysis for the Laboratory and Chemical Plant , 2003 .

[34]  A. Viña,et al.  Remote estimation of leaf area index and green leaf biomass in maize canopies , 2003 .

[35]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[36]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[37]  D. Massart,et al.  Elimination of uninformative variables for multivariate calibration. , 1996, Analytical chemistry.

[38]  Anatoly A. Gitelson,et al.  Why and What for the Leaves Are Yellow in Autumn? On the Interpretation of Optical Spectra of Senescing Leaves (Acerplatanoides L.)* , 1995 .

[39]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[40]  D. M. Moss,et al.  Red edge spectral measurements from sugar maple leaves , 1993 .

[41]  Claus Buschmann,et al.  In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation , 1993 .

[42]  H. Mohr,et al.  ABSORPTION SPECTRA OF LEAVES CORRECTED FOR SCATTERING and DISTRIBUTIONAL ERROR: A RADIATIVE TRANSFER and ABSORPTION STATISTICS TREATMENT , 1993 .

[43]  C. Daughtry,et al.  Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies , 1992 .

[44]  J. Dungan,et al.  Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. , 1990, Tree physiology.

[45]  G. Asrar,et al.  Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat1 , 1984 .

[46]  D. Horler,et al.  The red edge of plant leaf reflectance , 1983 .

[47]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[48]  C. Tucker Asymptotic nature of grass canopy spectral reflectance. , 1977, Applied optics.

[49]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[50]  J. Ayars,et al.  Long-rotation sugarcane in Hawaii sustains high carbon accumulation and radiation use efficiency in 2nd year of growth , 2015 .

[51]  F. M. Danson,et al.  RED-EDGE RESPONSE TO FOREST LEAF-AREA INDEX (VOL 16, PG 183, 1995) , 1995 .

[52]  J. Dungan,et al.  The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration , 1991 .

[53]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[54]  D. Watson Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years , 1947 .