Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors

Zinc oxide nanoparticles are prepated by calcining zinc hydrocarbonate precursors at 300-700 degrees C (ZnO300-700). and corresponding gas sensing property are tested at 300 degrees C by using formaldehyde as the probe Although the nanoparticle sizes are found to gradually increase with calcination temperature, the sensor measurements reveal the size-independent behavior that ZnO500 and ZnO300 have the highest and lowest responses, respectively Spectroscopic characterization further reveals nonstoichiometric compositions of ZnO nanoparticles ZnO300 has the largest excess oxygen (oxygen interstitial, O(1)). whereas ZnO500 has the largest excess zinc (oxygen vacancy, V(o) and/or zinc interstitial, Zn(1)) Accordingly, a new sensing mechanism is proposed for ZnO nanoparticle sensois Excess zinc favors chemisorption of oxygen onto the nanoparticle surface, leading to reacting with mot e formaldehyde molecules to get a high signal On the contrary, excess oxygen inhibits free oxygen to be chemisorbed onto the nanoparticle surface, and thus decreases the gas response Finally, this new sensing mechanism is verified by testing gas response of ZnO500 nanoparticles annealed at different atmospheres (C) 2010 Elsevier B V All lights reserved

[1]  F. Guittard,et al.  X-Ray photoelectron spectroscopy study of polycrystalline zinc modified by n-dodecanethiol and 3-perfluorooctyl-propanethiol , 2002 .

[2]  J. R. Botha,et al.  Influence of metal organic chemical vapor deposition growth parameters on the luminescent properties of ZnO thin films deposited on glass substrates , 2008 .

[3]  Y. Hwang,et al.  Photoluminescence of polycrystalline ZnO under different annealing conditions , 2003 .

[4]  A. Janotti,et al.  Native point defects in ZnO , 2007 .

[5]  T. Seiyama,et al.  A New Detector for Gaseous Components Using Semiconductive Thin Films. , 1962 .

[6]  Sang Yeol Lee,et al.  Synthesis and analysis of resistance-controlled Ga-doped ZnO nanowires , 2008 .

[7]  K. Hoffmann,et al.  Electron Spin Resonance of Lattice Defects in Zinc Oxide , 1974 .

[8]  Mahuya Chakrabarti,et al.  Role of defects in tailoring structural, electrical and optical properties of ZnO , 2009 .

[9]  Paul Erhart,et al.  First-principles study of migration mechanisms and diffusion of oxygen in zinc oxide , 2006 .

[10]  Q. Jiang,et al.  Influence of preparation methods on photoluminescence properties of ZnO films on quartz glass , 2008 .

[11]  Ning Han,et al.  Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO , 2009 .

[12]  Wai Kin Chan,et al.  Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods , 2004 .

[13]  Qingyi Pan,et al.  Grain size control and gas sensing properties of ZnO gas sensor , 2000 .

[14]  Caihong Wang,et al.  Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods , 2006 .

[15]  Hwai-Fu Tu,et al.  Ultraviolet emission blueshift of ZnO related to Zn , 2007 .

[16]  Chong-yu Wang,et al.  First-principles study of diffusion of zinc vacancies and interstitials in ZnO , 2009 .

[17]  R. Zhang,et al.  Production of high-quality ZnO films by the two-step annealing method , 2004 .

[18]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .

[19]  Michio Kondo,et al.  Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2∕ZnO antireflection coating , 2006 .

[20]  Dan Zhang,et al.  Photoluminescence investigation on the gas sensing property of ZnO nanorods prepared by plasma-enhanced CVD method , 2010 .

[21]  Yunfa Chen,et al.  NiO thin film fabricated by electrophoretic deposition and formaldehyde gas sensing property thereof. , 2009, Journal of nanoscience and nanotechnology.

[22]  Tongtong Wang,et al.  Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications , 2005 .

[23]  David R. Clarke,et al.  On the optical band gap of zinc oxide , 1998 .

[24]  D. Look,et al.  Residual Native Shallow Donor in ZnO , 1999 .

[25]  G. Neumann On the Defect Structure of Zinc-Doped Zinc Oxide , 1981 .

[26]  M. Houng,et al.  Surface modification of ZnO film by hydrogen peroxide solution , 2008 .

[27]  R. Chang,et al.  Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition , 2004 .

[28]  Junji Nakamura,et al.  The role of ZnO in Cu/ZnO methanol synthesis catalysts — morphology effect or active site model? , 2001 .

[29]  T. Fujitani,et al.  Evidence for the migration of ZnOx in a Cu/ZnO methanol synthesis catalyst , 1994 .

[30]  A. Pöppl,et al.  ESR and Photo‐ESR Investigations of Zinc Vacancies and Interstitial Oxygen Ions in Undoped ZnO Ceramics , 1991 .

[31]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[32]  Zhong-Lin Wang Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics , 2008 .

[33]  A. Waag,et al.  Origin and consequences of a high stacking fault density in epitaxial ZnO layers , 2002 .

[34]  Tianmin Wang,et al.  Green-emission and n-type conductivity of ZnO:Zn films obtained using vapor deposition method , 2009 .

[35]  M. Willander,et al.  Identification of oxygen and zinc vacancy optical signals in ZnO , 2006 .

[36]  P. Lang,et al.  Self-assembled alkanethiol monolayers on a Zn substrate: Interface studied by XPS , 2008 .

[37]  Seiji Isotani,et al.  Energetics of native defects in ZnO , 2001 .

[38]  Andreas Kornowski,et al.  Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[39]  Zuowan Zhou,et al.  Microwave absorption behaviors of tetra-needle-like ZnO whiskers , 2006 .

[40]  David P. Norton,et al.  Recent progress in processing and properties of ZnO , 2003 .

[41]  P. Erhart,et al.  First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects , 2006 .

[42]  P. H. Miller The Electrical Conductivity of Zinc Oxide , 1941 .

[43]  A. Ahmad,et al.  Effect of processing on the properties of tin oxide-based thick-film gas sensors , 2003 .

[44]  B. Tell,et al.  Raman Effect in Zinc Oxide , 1966 .

[45]  G. Heiland,et al.  Electronic Processes in Zinc Oxide , 1959 .

[46]  S. Studenikin,et al.  Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis , 1998 .

[47]  W. Cheng,et al.  Study on synthesis and blue emission mechanism of ZnO tetrapodlike nanostructures , 2006 .

[48]  E. Samulski,et al.  Influence of excitation density on photoluminescence of zinc oxide with different morphologies and dimensions , 2005 .

[49]  Cheng Yang,et al.  Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2 , 2007 .

[50]  B. Lin,et al.  Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions , 2001 .

[51]  David C. Look,et al.  Introduction and recovery of point defects in electron-irradiated ZnO , 2005 .

[52]  Yuan Zhang,et al.  Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties , 2009 .

[53]  M. Halali,et al.  An investigation on the calcination kinetics of zinc carbonate hydroxide and Calsimin zinc carbonate concentrate , 2006 .

[54]  G. D. Watkins,et al.  Intrinsic defects in ZnO: A study using optical detection of electron paramagnetic resonance , 2006 .

[55]  Alice Dohnalkova,et al.  Steam Reforming of Methanol Over Highly Active Pd/ZnO Catalyst. , 2002 .

[56]  R. Frost,et al.  Thermal analysis of smithsonite and hydrozincite , 2008 .

[57]  R. Frost,et al.  Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite , 2008 .

[58]  J. H. Lee,et al.  Gas sensors using hierarchical and hollow oxide nanostructures: Overview , 2009 .

[59]  Takafumi Yao,et al.  Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization , 1998 .

[60]  Calculation of the vibrational spectrum of crystalline zinc oxide and modelling interstitial zinc impurities , 1993 .