Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures

The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary – the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.

[1]  Jérôme Faist,et al.  A density matrix model of transport and radiation in quantum cascade lasers , 2010 .

[2]  Carlo Sirtori,et al.  Wave engineering with THz quantum cascade lasers , 2013, Nature Photonics.

[3]  D. Ban,et al.  Scanning differential spreading resistance microscopy on actively driven buried heterostructure multiquantum-well lasers , 2004, IEEE Journal of Quantum Electronics.

[4]  王涛,et al.  High power terahertz quantum cascade laser , 2013 .

[5]  Edward H. Sargent,et al.  Direct imaging of the depletion region of an InP p-n junction under bias using scanning voltage microscopy , 2002 .

[6]  Vincenzo Spagnolo,et al.  Terahertz quantum cascade lasers with large wall-plug efficiency , 2007 .

[7]  Karin Hinzer,et al.  Nanoscopic electric potential probing: Influence of probe–sample interface on spatial resolution , 2004 .

[8]  Xavier Marcadet,et al.  Phase-resolved measurements of stimulated emission in a laser , 2007, Nature.

[9]  M. Kindelan,et al.  CURRENT-VOLTAGE CHARACTERISTIC AND STABILITY IN RESONANT-TUNNELING N-DOPEDSEMICONDUCTOR SUPERLATTICES , 1997, cond-mat/9707245.

[10]  Schneider,et al.  Optical studies of electric field domains in GaAs-AlxGa1-xAs superlattices. , 1990, Physical review. B, Condensed matter.

[11]  Qing Hu,et al.  Ground state terahertz quantum cascade lasers , 2012 .

[12]  Qing Hu,et al.  Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers , 2013 .

[13]  Qing Hu,et al.  Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. , 2005, Optics express.

[14]  R. Colombelli,et al.  Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions , 2009, Nature.

[15]  Sahand Hormoz,et al.  Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. , 2008, Optics express.

[16]  L. Bonilla,et al.  Non-linear dynamics of semiconductor superlattices , 2005 .

[17]  H. Grahn,et al.  Noise-induced current switching in semiconductor superlattices: observation of nonexponential kinetics in a high-dimensional system. , 2012, Physical review letters.

[18]  M. A. O. Ignacio,et al.  How to cite this article , 2016 .

[19]  Juliette Mangeney,et al.  Direct intensity sampling of a modelocked terahertz quantum cascade laser , 2012 .

[20]  K. M. Chung,et al.  Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. , 2012, Optics express.

[21]  Qing Hu,et al.  An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K , 2013 .

[22]  Jérôme Faist,et al.  Quantum cascade lasers operating from 1.2to1.6THz , 2007 .

[23]  David A. Ritchie,et al.  THz and sub‐THz quantum cascade lasers , 2009 .

[24]  Z. R. Wasilewski,et al.  A phonon scattering assisted injection and extraction based terahertz quantum cascade laser , 2012, 1201.4189.

[25]  Qing Hu,et al.  Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K , 2009 .

[26]  Edward H. Sargent,et al.  Direct observation of lateral current spreading in ridge waveguide lasers using scanning voltage microscopy , 2003 .

[27]  Qing Hu,et al.  A terahertz pulse emitter monolithically integrated with a quantum cascade laser , 2011 .

[28]  Rudolf Hey,et al.  Nonlinear transport in quantum-cascade lasers: The role of electric-field domain formation for the laser characteristics , 2011 .

[29]  J. Reno,et al.  A 1.8-THz quantum cascade laser operating significantly above the temperature of ℏω/kB , 2011 .

[30]  Paolo Lugli,et al.  Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers , 2009 .

[31]  Shun Lien Chuang,et al.  Physics of Photonic Devices , 2009 .

[32]  Aiting Jiang,et al.  Broadly tunable terahertz generation in mid-infrared quantum cascade lasers , 2013, Nature Communications.

[33]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[34]  D. Ban,et al.  Scanning voltage microscopy on buried heterostructure multiquantum-well lasers: identification of a diode current leakage path , 2004, IEEE Journal of Quantum Electronics.

[35]  D. Ban,et al.  Scanning voltage microscopy on active semiconductor lasers: the impact of doping profile near an epitaxial growth interface on series resistance , 2004, IEEE Journal of Quantum Electronics.

[36]  Mattias Beck,et al.  Broadband THz lasing from a photon-phonon quantum cascade structure emitting from 2.8 to 4.1 THz. , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[37]  Massimo Inguscio,et al.  Quantum-limited frequency fluctuations in a terahertz laser , 2012, Nature Photonics.

[38]  S Safavi-Naeini,et al.  Electrically switching transverse modes in high power THz quantum cascade lasers. , 2010, Optics express.

[39]  W. Sachtler,et al.  The work function of gold , 1966 .

[40]  E. Linfield,et al.  Terahertz quantum cascade lasers , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[41]  Edward H. Sargent,et al.  Two-dimensional profiling of carriers in a buried heterostructure multi-quantum-well laser: Calibrated scanning spreading resistance microscopy and scanning capacitance microscopy , 2002 .

[42]  Werner Schrenk,et al.  Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides , 2013 .

[43]  Qi Jie Wang,et al.  Small-divergence semiconductor lasers by plasmonic collimation , 2008 .

[44]  Qing Hu,et al.  186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design , 2009 .

[45]  Edward H. Sargent,et al.  Two-Dimensional Transverse Cross-Section Nanopotentiometry of Actively-Driven Buried Heterostructure Multiple-Quantum-Well Lasers , 2002 .

[46]  Qing Hu,et al.  Tuning a terahertz wire laser , 2009, 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM).

[47]  A. E. Zhukov,et al.  Self-oscillations in weakly coupled GaAs/AlGaAs superlattices at 77.3 K , 2009 .

[48]  Mattias Beck,et al.  Low-divergence single-mode terahertz quantum cascade laser , 2009 .

[49]  Galán,et al.  Dynamics of electric-field domains and oscillations of the photocurrent in a simple superlattice model. , 1994, Physical review. B, Condensed matter.

[50]  K. H. Ploog,et al.  Cathodoluminescence imaging of electric-field domains in semiconductor superlattices , 1996 .

[51]  Yuyan Han,et al.  Optimization of radiative recombination in terahertz quantum cascade lasers for high temperature operation , 2012 .

[52]  K. Ploog,et al.  Electric-field domains in semiconductor superlattices: A novel system for tunneling between 2D systems. , 1991, Physical review letters.

[53]  Gerhard Klimeck,et al.  Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements , 2010 .

[54]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[55]  Z. R. Wasilewski,et al.  Terahertz quantum-cascade lasers based on a three-well active module , 2007 .

[56]  Choi,et al.  Periodic negative conductance by sequential resonant tunneling through an expanding high-field superlattice domain. , 1987, Physical review. B, Condensed matter.

[57]  D. Ban,et al.  Time-Resolved Thermal Quenching of THz Quantum Cascade Lasers , 2010, IEEE Journal of Quantum Electronics.

[58]  A. Wacker,et al.  Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures , 2002 .

[59]  Hua Qin,et al.  Spontaneous quasi-periodic current self-oscillations in a weakly coupled GaAs/(Al,Ga)As superlattice at room temperature , 2013 .

[60]  Werner Schrenk,et al.  High power terahertz quantum cascade lasers with symmetric wafer bonded active regions , 2013 .

[61]  Harald Schneider,et al.  Optical detection of high‐field domains in GaAs/AlAs superlattices , 1989 .