Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity

[1]  Y. Yanagawa,et al.  Nav1.2 haplodeficiency in excitatory neurons causes absence-like seizures in mice , 2018, Communications Biology.

[2]  Steven J. Middleton,et al.  Altered hippocampal replay is associated with memory impairment in mice heterozygous for the Scn2a gene , 2018, Nature Neuroscience.

[3]  K. Yamakawa,et al.  DYRK1A-haploinsufficiency in mice causes autistic-like features and febrile seizures , 2018, Neurobiology of Disease.

[4]  K. Yamakawa,et al.  Potentiation of excitatory synaptic transmission ameliorates aggression in mice with Stxbp1 haploinsufficiency , 2017, Human molecular genetics.

[5]  Y. Yanagawa,et al.  Nav1.2 is expressed in caudal ganglionic eminence-derived disinhibitory interneurons: Mutually exclusive distributions of Nav1.1 and Nav1.2. , 2017, Biochemical and biophysical research communications.

[6]  Edgar A Ycu,et al.  Modular organization of the brainstem noradrenaline system coordinates opposing learning states , 2017, Nature Neuroscience.

[7]  L. Lagae,et al.  Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders , 2017, Brain : a journal of neurology.

[8]  Roy Ben-Shalom,et al.  Opposing Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in Individuals With Autism Spectrum Disorder or Infantile Seizures , 2017, Biological Psychiatry.

[9]  Joan,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[10]  G. Kirov,et al.  Mutation screening of SCN2A in schizophrenia and identification of a novel loss-of-function mutation , 2016, Psychiatric genetics.

[11]  K. Martinowich,et al.  Activity-dependent signaling: influence on plasticity in circuits controlling fear-related behavior , 2016, Current Opinion in Neurobiology.

[12]  Chunyu Liu,et al.  Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database , 2016, Molecular Psychiatry.

[13]  Doug Speed,et al.  Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease , 2015, Nature Neuroscience.

[14]  L. Schieve,et al.  Estimated Prevalence of Autism and Other Developmental Disabilities Following Questionnaire Changes in the 2014 National Health Interview Survey. , 2015, National health statistics reports.

[15]  O. Howes,et al.  Glutamate and dopamine in schizophrenia: An update for the 21st century , 2015, Journal of psychopharmacology.

[16]  A. Nitta,et al.  Behavioral phenotypes for negative symptoms in animal models of schizophrenia. , 2014, Journal of pharmacological sciences.

[17]  F. Fujiyama,et al.  Singular localization of sodium channel β4 subunit in unmyelinated fibres and its role in the striatum , 2014, Nature Communications.

[18]  Yousheng Shu,et al.  Molecular identity of axonal sodium channels in human cortical pyramidal cells , 2014, Front. Cell. Neurosci..

[19]  Joshua A. Gordon,et al.  Fear and Safety Engage Competing Patterns of Theta-Gamma Coupling in the Basolateral Amygdala , 2014, Neuron.

[20]  Alexander Hoischen,et al.  Prioritization of neurodevelopmental disease genes by discovery of new mutations , 2014, Nature Neuroscience.

[21]  D. Pizzagalli,et al.  Prefrontal Oscillations during Recall of Conditioned and Extinguished Fear in Humans , 2014, The Journal of Neuroscience.

[22]  A. Kolevzon,et al.  De novo SCN2A splice site mutation in a boy with Autism spectrum disorder , 2014, BMC Medical Genetics.

[23]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[24]  D. Lev,et al.  Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome , 2013, Neurology.

[25]  A. Sawa,et al.  Mouse models of gene–environment interactions in schizophrenia , 2013, Neurobiology of Disease.

[26]  Michael R. Johnson,et al.  De novo mutations in the classic epileptic encephalopathies , 2013, Nature.

[27]  S. Scherer,et al.  Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. , 2013, American journal of human genetics.

[28]  N. Tamamaki,et al.  Nav1.1 haploinsufficiency in excitatory neurons ameliorates seizure-associated sudden death in a mouse model of Dravet syndrome , 2013, Human molecular genetics.

[29]  J. Shendure,et al.  Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1 , 2013, Nature Genetics.

[30]  H. Kinney,et al.  Whole genome sequencing identifies SCN2A mutation in monozygotic twins with Ohtahara syndrome and unique neuropathologic findings , 2013, Epilepsia.

[31]  K. Roeder,et al.  The Autism Sequencing Consortium: Large-Scale, High-Throughput Sequencing in Autism Spectrum Disorders , 2012, Neuron.

[32]  B. V. van Bon,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, The New England journal of medicine.

[33]  D. Horn,et al.  Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study , 2012, The Lancet.

[34]  W. Singer,et al.  Neuronal Dynamics and Neuropsychiatric Disorders: Toward a Translational Paradigm for Dysfunctional Large-Scale Networks , 2012, Neuron.

[35]  Michael F. Walker,et al.  De novo mutations revealed by whole-exome sequencing are strongly associated with autism , 2012, Nature.

[36]  M. Jaiswal,et al.  Comparative Evaluation of Forced Swim Test and Tail Suspension Test as Models of Negative Symptom of Schizophrenia in Rodents , 2012, ISRN psychiatry.

[37]  C A Jones,et al.  Animal models of schizophrenia , 2011, British journal of pharmacology.

[38]  C. Lord,et al.  Behavioural phenotyping assays for mouse models of autism , 2010, Nature Reviews Neuroscience.

[39]  A. Becker,et al.  Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. , 2010, Brain : a journal of neurology.

[40]  J. Gogos,et al.  Cognition in mouse models of schizophrenia susceptibility genes. , 2010, Schizophrenia bulletin.

[41]  M. Geyer,et al.  Prepulse inhibition and genetic mouse models of schizophrenia , 2009, Behavioural Brain Research.

[42]  K. Yamakawa,et al.  De novo mutations of voltage-gated sodium channel αII gene SCN2A in intractable epilepsies , 2009, Neurology.

[43]  Yousheng Shu,et al.  Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation , 2009, Nature Neuroscience.

[44]  T. Miyakawa,et al.  Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia , 2008, Molecular Brain.

[45]  Jacqueline N. Crawley,et al.  Unusual Repertoire of Vocalizations in the BTBR T+tf/J Mouse Model of Autism , 2008, PloS one.

[46]  M. Crair,et al.  Cortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel Development , 2008, The Journal of Neuroscience.

[47]  H. Markram,et al.  Abnormal Fear Conditioning and Amygdala Processing in an Animal Model of Autism , 2008, Neuropsychopharmacology.

[48]  D. Bowler,et al.  Differential fear conditioning in Asperger's syndrome: Implications for an amygdala theory of autism , 2007, Neuropsychologia.

[49]  Tatiana A. Stroganova,et al.  Excess of High Frequency Electroencephalogram Oscillations in Boys with Autism , 2007, Biological Psychiatry.

[50]  John G. Sled,et al.  Behavioral Phenotypes of Disc1 Missense Mutations in Mice , 2007, Neuron.

[51]  A. Belger,et al.  Application of Electroencephalography to the Study of Cognitive and Brain Functions in Schizophrenia , 2007, Schizophrenia bulletin.

[52]  Jacqueline N. Crawley,et al.  Mouse behavioral tasks relevant to autism: Phenotypes of 10 inbred strains , 2007, Behavioural Brain Research.

[53]  G. Avanzini,et al.  Effects in Neocortical Neurons of Mutations of the Nav1.2 Na+ Channel causing Benign Familial Neonatal-Infantile Seizures , 2006, The Journal of Neuroscience.

[54]  K. Yamakawa,et al.  A Nonsense Mutation of the Sodium Channel Gene SCN2A in a Patient with Intractable Epilepsy and Mental Decline , 2004, The Journal of Neuroscience.

[55]  Douglas W. Jones,et al.  Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. , 2004, The American journal of psychiatry.

[56]  G. Andrews,et al.  Cost-effectiveness of current and optimal treatment for schizophrenia , 2003, British Journal of Psychiatry.

[57]  Hongkui Zeng,et al.  Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  I. Scheffer,et al.  Sodium-channel defects in benign familial neonatal-infantile seizures , 2002, The Lancet.

[59]  N. Swerdlow,et al.  Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies , 2001, Psychopharmacology.

[60]  M Montal,et al.  A missense mutation of the Na+ channel αII subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  E. Masliah,et al.  Neuronal Death and Perinatal Lethality in Voltage-Gated Sodium Channel αII-Deficient Mice , 2000 .

[62]  K. Rhodes,et al.  Type I and type II Na+ channel α‐subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain , 1999, The Journal of comparative neurology.

[63]  N. Andreasen,et al.  Symptoms, signs, and diagnosis of schizophrenia , 1995, The Lancet.

[64]  William A. Catterall,et al.  Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons , 1989, Neuron.

[65]  Zhong Sheng Sun,et al.  Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database , 2016, Molecular Psychiatry.

[66]  K. Yamakawa Mutations of Voltage-Gated Sodium Channel Genes SCN1A and SCN2A in Epilepsy, Intellectual Disability, and Autism , 2016 .

[67]  D. Weinberger,et al.  Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways , 2012, Molecular Psychiatry.

[68]  Yousheng Shu,et al.  Hu, W. et al. Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nature Neurosci. 12, 996-1002 , 2009 .

[69]  E. Masliah,et al.  Neuronal death and perinatal lethality in voltage-gated sodium channel alpha(II)-deficient mice. , 2000, Biophysical journal.