Simulation of multivariate diffusion bridges

Summary We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously proposed simulation method for one-dimensional bridges to the multivariate setting. First a method of simulating approximate, but often very accurate, diffusion bridges is proposed. These approximate bridges are used as proposals for easily implementable Markov chain Monte Carlo algorithms that, apart from a small discretization error, produce exact diffusion bridges. The new method is more generally applicable than previous methods. Another advantage is that the new method works well for diffusion bridges in long intervals because the computational complexity of the method is linear in the length of the interval. In a simulation study the new method performs well, and its usefulness is illustrated by an application to Bayesian estimation for the multivariate hyperbolic diffusion model.

[1]  Mikko S. Pakkanen,et al.  Functional limit theorems for generalized variations of the fractional Brownian sheet , 2014, 1404.2822.

[2]  Annie Millet,et al.  Integration by Parts and Time Reversal for Diffusion Processes , 1989 .

[3]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  Barbara Annicchiarico,et al.  150 Years of Italian Co2 Emissions and Economic Growth , 2014 .

[5]  S. Chib Likelihood based inference for diffusion driven state space models , 2006 .

[6]  G. Roberts,et al.  On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .

[7]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[8]  Jim Pitman,et al.  Markovian Bridges: Construction, Palm Interpretation, and Splicing , 1993 .

[9]  G. Roberts,et al.  Retrospective exact simulation of diffusion sample paths with applications , 2006 .

[10]  D. Florens-zmirou,et al.  Estimation of the coefficients of a diffusion from discrete observations , 1986 .

[11]  Yacine Ait-Sahalia Closed-Form Likelihood Expansions for Multivariate Diffusions , 2002, 0804.0758.

[12]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[13]  Michael Sørensen,et al.  Estimating functions for diffusion-type processes , 2012 .

[14]  N. Shephard,et al.  Likelihood INference for Discretely Observed Non-linear Diffusions , 2001 .

[15]  B. Delyon,et al.  Simulation of conditioned diffusion and application to parameter estimation , 2006 .

[16]  Bjørn Eraker MCMC Analysis of Diffusion Models With Application to Finance , 2001 .

[17]  Alexandros Beskos,et al.  A Factorisation of Diffusion Measure and Finite Sample Path Constructions , 2008 .

[18]  Federico Carlini,et al.  On an Estimation Method for an Alternative Fractionally Cointegrated Model , 2014 .

[19]  Paul Fearnhead,et al.  Markov Chain Monte Carlo for Exact Inference for Diffusions , 2011, 1102.5541.

[20]  Christian M. Dahl,et al.  Nonparametric Estimation of Cumulative Incidence Functions for Competing Risks Data with Missing Cause of Failure , 2013 .

[21]  U. Haussmann,et al.  TIME REVERSAL OF DIFFUSIONS , 1986 .

[22]  J. Rosenthal,et al.  On the efficiency of pseudo-marginal random walk Metropolis algorithms , 2013, The Annals of Statistics.

[23]  Marcelo Fernandes,et al.  Price discovery in dual-class shares across multiple markets , 2013 .

[24]  Yacine Aït-Sahalia Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .

[25]  Charlotte Christiansen,et al.  Macro-Finance Determinants of the Long-Run Stock-Bond Correlation: The DCC-MIDAS Specification , 2015 .

[26]  A. Gallant,et al.  Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes , 2002 .

[27]  Michael Sørensen,et al.  Importance sampling techniques for estimation of diffusion models , 2012 .

[28]  K. Lindsay,et al.  Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations , 2006 .

[29]  M. Sørensen,et al.  The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes , 2007 .

[30]  Yukai Yang,et al.  Linearity and misspecification tests for vector smooth transition regression models , 2014 .

[31]  J. Kent Time-reversible diffusions , 1978 .

[32]  A. Pedersen A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations , 1995 .

[33]  G. Roberts,et al.  Monte Carlo Maximum Likelihood Estimation for Discretely Observed Diffusion Processes , 2009, 0903.0290.

[34]  Mogens Bladt,et al.  Corrigendum to “Simple simulation of diffusion bridges with application to likelihood inference for diffusions” , 2010, Bernoulli.

[35]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[36]  T. Teräsvirta,et al.  A Smooth Transition Logit Model of The Effects of Deregulation in the Electricity Market , 2016 .

[37]  Mathieu Kessler Estimation of an Ergodic Diffusion from Discrete Observations , 1997 .

[38]  Rong Chen,et al.  On Generating Monte Carlo Samples of Continuous Diffusion Bridges , 2010 .

[39]  M. Sørensen,et al.  Martingale estimation functions for discretely observed diffusion processes , 1995 .

[40]  Michael Sorensen,et al.  Efficient Estimation for Ergodic Diffusions Sampled at High Frequency , 2007 .

[41]  Mehmet Caner,et al.  Oracle Inequalities for Convex Loss Functions with Nonlinear Targets , 2013, 1312.3525.

[42]  Darren J Wilkinson,et al.  Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo , 2011, Interface Focus.

[43]  T. Ozaki 2 Non-linear time series models and dynamical systems , 1985 .

[44]  M. Bladt,et al.  Simulation of multivariate diffusion bridges , 2014, 1405.7728.

[45]  M. Pitt,et al.  Likelihood based inference for diffusion driven models , 2004 .

[46]  L. Rogers,et al.  Coupling of Multidimensional Diffusions by Reflection , 1986 .

[47]  A. Golightly,et al.  On Bayesian Inference for Stochastic Kinetic Models using Diffusion Approximations , 2004 .

[48]  Are University Admissions Academically Fair , 2016 .

[49]  Darren J. Wilkinson,et al.  Bayesian sequential inference for nonlinear multivariate diffusions , 2006, Stat. Comput..

[50]  Yukai Yang,et al.  Testing constancy of the error covariance matrix in vector models against parametric alternatives using a spectral decomposition , 2014 .

[51]  John Schoenmakers,et al.  Simulation of forward-reverse stochastic representations for conditional diffusions , 2013, 1306.2452.

[52]  D. Wilkinson,et al.  Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation , 2005, Biometrics.

[53]  Michael Sørensen,et al.  Maximum Likelihood Estimation for Integrated Diffusion Processes , 2010 .

[54]  Yukai Yang,et al.  Specification, estimation and evaluation of vector smooth transition autoregressive models with applications , 2014 .

[55]  Gareth O. Roberts,et al.  Importance sampling techniques for estimation of diffusion models , 2009 .

[56]  Darren J. Wilkinson,et al.  Bayesian inference for nonlinear multivariate diffusion models observed with error , 2008, Comput. Stat. Data Anal..

[57]  Timo Teräsvirta,et al.  A Lagrange multiplier test for testing the adequacy of constant conditional correlation GARCH model , 2017 .

[58]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[59]  Mu-Fa Chen,et al.  Coupling Methods for Multidimensional Diffusion Processes , 1989 .