Reconstituted LH2 in multilayer membranes induced by poly-L-lysine: structure of supramolecular and electronic states

[1]  C. Hunter,et al.  Cryo-EM Structure of the Rhodobacter sphaeroides Light-Harvesting 2 Complex at 2.1 Å , 2021, Biochemistry.

[2]  C. Hunter,et al.  Cryo-EM structure of the monomeric Rhodobacter sphaeroides RC–LH1 core complex at 2.5 Å , 2021, The Biochemical journal.

[3]  Matthew P. Johnson,et al.  Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I , 2021, Nature Plants.

[4]  N. Cowieson,et al.  Stimuli-Induced Nonequilibrium Phase Transitions in Polyelectrolyte-Surfactant Complex Coacervates. , 2020, Langmuir.

[5]  N. Cowieson,et al.  Synthesis of multilamellar walls vesicles polyelectrolyte-surfactant complexes from pH-stimulated phase transition using microbial biosurfactants. , 2020, Journal of colloid and interface science.

[6]  Hao Li,et al.  Dynamical and allosteric regulation of photoprotection in light harvesting complex II , 2020, Science China Chemistry.

[7]  G. Saracco,et al.  How paired PSII–LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometry , 2020, Nature Communications.

[8]  K. Schulten,et al.  Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism , 2019, Cell.

[9]  A. Rutherford,et al.  Evolution of photochemical reaction centres: more twists? , 2018, bioRxiv.

[10]  Jianping Zhang,et al.  Orientation assignment of LH2 and LH1-RC complexes from Thermochromatium tepidum reconstituted in PC liposome and their ultrafast excitation dynamics comparison between in artificial and in natural chromatophores , 2018, Chemical Physics Letters.

[11]  Y. Brun,et al.  Restricted Localization of Photosynthetic Intracytoplasmic Membranes (ICMs) in Multiple Genera of Purple Nonsulfur Bacteria , 2018, mBio.

[12]  C. A. Siebert,et al.  Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 Å , 2018, Nature.

[13]  Jian-Ren Shen,et al.  Structure of photosynthetic LH1–RC supercomplex at 1.9 Å resolution , 2018, Nature.

[14]  R. P. Rastogi,et al.  Site, trigger, quenching mechanism and recovery of non-photochemical quenching in cyanobacteria: recent updates , 2018, Photosynthesis Research.

[15]  Jianshu Cao,et al.  Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04814a , 2018, Chemical science.

[16]  D. Niedzwiedzki,et al.  Adaptation of Rhodopseudomonas acidophila strain 7050 to growth at different light intensities: what are the benefits to changing the type of LH2? , 2018, Faraday discussions.

[17]  Z. Wang-Otomo,et al.  Carotenoid Singlet Fission Reactions in Bacterial Light Harvesting Complexes As Revealed by Triplet Excitation Profiles. , 2017, Journal of the American Chemical Society.

[18]  Tihana Mirkovic,et al.  Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. , 2017, Chemical reviews.

[19]  R. Cogdell,et al.  An Ab Initio Description of the Excitonic Properties of LH2 and Their Temperature Dependence. , 2016, The journal of physical chemistry. B.

[20]  Robert Eugene Blankenship,et al.  Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria , 2016, The journal of physical chemistry. B.

[21]  王鹏,et al.  Spectroscopic Properties of LH2 from Thermochromatium tepidum in Liposome and Detergent Micelles , 2016 .

[22]  Y. Saga,et al.  Determination of the Molar Extinction Coefficients of the B800 and B850 Absorption Bands in Light-harvesting Complexes 2 Derived from Three Purple Photosynthetic Bacteria Rhodoblastus acidophilus, Rhodobacter sphaeroides, and Phaeospirillum molischianum by Extraction of Bacteriochlorophyll a , 2016, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[23]  R. Cogdell,et al.  Carotenoids and Photosynthesis. , 2016, Sub-cellular biochemistry.

[24]  Suping Yang,et al.  A unique low light adaptation mechanism in Rhodobacter azotoformans , 2014, Journal of basic microbiology.

[25]  D. Leister,et al.  Structure and dynamics of thylakoids in land plants. , 2014, Journal of experimental botany.

[26]  J. Rochaix Regulation and dynamics of the light-harvesting system. , 2014, Annual review of plant biology.

[27]  E. Maréchal,et al.  Contribution of galactoglycerolipids to the 3‐dimensional architecture of thylakoids , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[28]  P. Bullough,et al.  Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: dimerization and quinone channels promoted by PufX. , 2013, Biochemistry.

[29]  R. Hildner,et al.  Influence of phospholipid composition on self-assembly and energy-transfer efficiency in networks of light-harvesting 2 complexes. , 2013, The journal of physical chemistry. B.

[30]  Q. Chi,et al.  Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas , 2013 .

[31]  T. Georgiou,et al.  Evolution of low-light adapted peripheral light-harvesting complexes in strains of Rhodopseudomonas palustris , 2013, Photosynthesis Research.

[32]  Peter G. Adams,et al.  Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. , 2012, Biochimica et biophysica acta.

[33]  M. Rätsep,et al.  A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes. , 2012, Biochimica et biophysica acta.

[34]  Cvetelin Vasilev,et al.  Carotenoids are essential for normal levels of dimerisation of the RC-LH1-PufX core complex of Rhodobacter sphaeroides: characterisation of R-26 as a crtB (phytoene synthase) mutant. , 2011, Biochimica et biophysica acta.

[35]  Robert Eugene Blankenship,et al.  Evolution of photosynthesis. , 2011, Annual review of plant biology.

[36]  Klaus Schulten,et al.  Energy transfer dynamics in an RC–LH1–PufX tubular photosynthetic membrane , 2010, New journal of physics.

[37]  Klaus Schulten,et al.  Self-assembly of photosynthetic membranes. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[38]  S. Scheuring,et al.  Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery , 2009, Photosynthesis Research.

[39]  Jianping Zhang,et al.  Specific Ca2+‐binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural modeling , 2009, The FEBS journal.

[40]  J. Sturgis,et al.  Organisation and function of the Phaeospirillum molischianum photosynthetic apparatus. , 2008, Biochimica et biophysica acta.

[41]  R. Cogdell,et al.  Comparison of the fluorescence kinetics of detergent-solubilized and membrane-reconstituted LH2 complexes from Rps. acidophila and Rb. sphaeroides , 2008, Photosynthesis Research.

[42]  R. Goss,et al.  The importance of grana stacking for xanthophyll cycle-dependent NPQ in the thylakoid membranes of higher plants. , 2007, Physiologia plantarum.

[43]  Jürgen Köhler,et al.  The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes , 2006, Quarterly Reviews of Biophysics.

[44]  P. Horton,et al.  Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[45]  Egbert J Boekema,et al.  Supramolecular organization of thylakoid membrane proteins in green plants. , 2005, Biochimica et biophysica acta.

[46]  J. Takemoto,et al.  Ultrastructure of carotenoid mutant strain R-26 of Rhodopseudomonas sphaeroides , 1978, Archives of Microbiology.

[47]  B. Maudinas,et al.  The influence of 2-hydroxybiphenyl on membranes of Rhodospirillum rubrum , 1973, Archiv für Mikrobiologie.

[48]  R. Cogdell,et al.  Carotenoids and bacterial photosynthesis: The story so far... , 2004, Photosynthesis Research.

[49]  H. Scheer,et al.  Identification of intramembrane hydrogen bonding between 13(1) keto group of bacteriochlorophyll and serine residue alpha27 in the LH2 light-harvesting complex. , 2003, Biochimica et Biophysica Acta.

[50]  R. Cogdell,et al.  Influence of carotenoid molecules on the structure of the bacteriochlorophyll binding site in peripheral light-harvesting proteins from Rhodobacter sphaeroides. , 2003, Biochemistry.

[51]  C. Bauer,et al.  Complex evolution of photosynthesis. , 2003, Annual review of plant biology.

[52]  J. Sturgis,et al.  Conformation of bacteriochlorophyll molecules in photosynthetic proteins from purple bacteria. , 1999, Biochemistry.

[53]  R. van Grondelle,et al.  Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. , 1998, Biochemistry.

[54]  G. Fowler,et al.  Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at alpha-Tyr-44 and alpha-Tyr-45. , 1994, The Biochemical journal.

[55]  R. W. Visschers,et al.  Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands , 1992, Nature.

[56]  P. Kiley,et al.  Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides , 1988 .

[57]  P. Kiley,et al.  Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides , 1988, Journal of bacteriology.

[58]  J. Anderson,et al.  Photoregulation of the Composition, Function, and Structure of Thylakoid Membranes , 1986 .

[59]  L. Staehelin,et al.  Spatial differentiation in photosynthetic and non-photosynthetic membranes of Rhodopseudomonas palustris , 1983, Journal of bacteriology.