Testing When a Parameter Is on the Boundary of the Maintained Hypothesis

This paper considers testing problems where several of the standard regularity conditions fail to hold. We consider the case where (i) parameter vectors in the null hypothesis may lie on the boundary of the maintained hypothesis and (ii) there may be a nuisance parameter that appears under the alternative hypothesis, but not under the null. The paper establishes the asymptotic null and local alternative distributions of quasi-likelihood ratio, rescaled quasi-likelihood ratio, Wald, and score tests in this case. The results apply to tests based on a wide variety of extremum estimators and apply to a wide variety of models. Examples treated in the paper are: (1) tests of the null hypothesis of no conditional heteroskedasticity in a GARCH(1, 1) regression model and (2) tests of the null hypothesis that some random coefficients have variances equal to zero in a random coefficients regression model with (possibly) correlated random coefficients.

[1]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[2]  H. Chernoff On the Distribution of the Likelihood Ratio , 1954 .

[3]  D. J. Bartholomew,et al.  A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES. II , 1959 .

[4]  Le Cam,et al.  Locally asymptotically normal families of distributions : certain approximations to families of distributions & thier use in the theory of estimation & testing hypotheses , 1960 .

[5]  C. Hildreth,et al.  Some Estimators for a Linear Model With Random Coefficients , 1968 .

[6]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[7]  Michael D. Perlman,et al.  One-Sided Testing Problems in Multivariate Analysis , 1969 .

[8]  M. Perlman Correction Notes: Correction to "One-Sided Problems in Multivariate Analysis" , 1971 .

[9]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[10]  Barr Rosenberg,et al.  The Analysis of a Cross-Section of Time Series by Stochastically Convergent Parameter Regression , 1973 .

[11]  D. Chant,et al.  On asymptotic tests of composite hypotheses in nonstandard conditions , 1974 .

[12]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[13]  D. Wise,et al.  A CONDITIONAL PROBIT MODEL FOR QUALITATIVE CHOICE: DISCRETE DECISIONS RECOGNIZING INTERDEPENDENCE AND HETEROGENEOUS PREFERENCES' , 1978 .

[14]  P. Jeganathan,et al.  Asymptotic theory of extimation when the limit of the log - likelihood ratios is mixed normal , 1980 .

[15]  C. Gouriéroux,et al.  Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters , 1982 .

[16]  D. Pollard Convergence of stochastic processes , 1984 .

[17]  D. Pollard New Ways to Prove Central Limit Theorems , 1985, Econometric Theory.

[18]  Robert F. Engle,et al.  Testing for Regression Coefficient Stability with a Stationary AR(1) Alternative , 1985 .

[19]  A. Shapiro Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints , 1985 .

[20]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[21]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[22]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[23]  Christian Gourieroux,et al.  Statistique et modèles économétriques , 1989 .

[24]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[25]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[26]  D. Andrews Generic Uniform Convergence , 1992, Econometric Theory.

[27]  D. Andrews,et al.  Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative , 1992 .

[28]  Thomas S. Shively,et al.  Locally Optimal Testing When a Nuisance Parameter Is Present Only under the Alternative , 1993 .

[29]  D. Andrews Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .

[30]  C. Geyer On the Asymptotics of Constrained $M$-Estimation , 1994 .

[31]  Hypothesis Testing of Varying Coefficient Regression Models: Procedures and Applications , 1994 .

[32]  Tim Bollerslev,et al.  Chapter 49 Arch models , 1994 .

[33]  One Sided Hypothesis Testing in Econometrics: A Survey , 1994 .

[34]  Donald W. K. Andrews,et al.  Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity , 1994 .

[35]  Donald W. K. Andrews,et al.  Admissibility of the Likelihood Ratio Test When a Nuisance Parameter is Present Only Under the Alternative , 1995 .

[36]  D. Andrews Admissibility of the lidelihood ratio test when the parameter space is restricted under the alternative , 1996 .

[37]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[38]  D. Andrews,et al.  Testing for Serial Correlation against an ARMA(1,1) Process , 1996 .

[39]  D. Andrews Estimation When a Parameter is on a Boundary , 1999 .

[40]  Maxwell L. King,et al.  Locally optimal one-sided tests for multiparameter hypotheses , 1997 .

[41]  D. Andrews Hypothesis testing with a restricted parameter space , 1998 .