The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery
暂无分享,去创建一个
Steven J. M. Jones | Marcel H. Schulz | Richard A. Moore | Andreas S. Richter | Catherine A. Ennis | John S. Satterlee | Christoph A. Merten | J. Danesh | I. Amit | Thomas Lengauer | D. Geschwind | R. Guigó | D. Zerbino | A. Kundaje | D. Torrents | M. Netea | A. Bird | R. Eils | S. Wiseman | S. Heath | W. Ouwehand | C. Wallace | G. Drewes | A. Milosavljevic | R. Siebert | E. Campo | J. Connors | C. Steidl | A. Phillips | C. Larabell | L. Siminoff | M. Esteller | M. Marra | Petar Glažar | N. Rajewsky | A. Tanay | B. Porse | P. Flicek | S. Antonarakis | E. Feingold | B. Ren | G. Bourque | B. Bernstein | M. Hirst | M. Bilenky | Å. Lernmark | K. Shirahige | S. Schreiber | M. Vingron | J. Martín-Subero | H. Stunnenberg | I. Gut | Wei Chen | D. Schübeler | A. Heravi‐Moussavi | A. Mungall | S. Yip | S. Beck | Tom H. Cheung | P. Rosenstiel | A. Karsan | A. Weng | K. Herrup | F. Grosveld | M. Lathrop | L. Clarke | J. Martens | T. Jenuwein | R. Harris | B. Brors | W. Reik | Ming Hu | B. Han | T. Pastinen | S. Prabhakar | P. Fraser | T. Enver | N. Soranzo | M. Pazin | C. Eaves | V. Pancaldi | L. Altucci | C. Bock | A. Ferguson-Smith | J. Fitzgibbon | R. Küppers | A. Mai | S. Minucci | P. Pelicci | M. Seifert | S. Spicuglia | E. Vellenga | J. Walter | B. Javierre | J. Bae | Ho-Ryun Chung | C. Breeze | H. Lehrach | J. Satterlee | O. Burren | Yussanne Ma | S. Sauer | P. Lasko | T. Ushijima | Viren Amin | Danny Leung | Vitor Onuchic | L. Chadwick | S. Dyke | Y. Joly | A. Butterworth | Y. Kanai | J. Hengstler | A. Wu | K. Nordström | Dena Procaccini | K. Maschke | R. Foo | Bong-Jo Kim | M. Frontini | Suman Lee | Zhenguo Wu | F. Tyson | I. Norstedt | D. Roberts | D. Paul | Mitchell D Stratton | N. Ip | P. Cronet | P. Durek | F. Klironomos | T. Pap | D. Rico | F. Müller | D. Yap | T. Ulas | J. Schultze | Florian Schmidt | Nina Gasparoni | G. Gasparoni | J. Polansky | Peter Ebert | A. Sinha | Jieyi Xiong | Gideon Zipprich | B. Felder | J. Eils | A. Hamann | B. Horsthemke | Tomasz Dyląg | S. Kinkley | K. Baßler | Roman Kreuzhuber | M. Kostadima | T. Arima | D. Richardson | David Bujold | S. Abrignani | Samuel Aparicio | L. Arrigoni | T. Manke | J. Pospisilik | Huating Wang | Hao Sun | J. Strattan | M. Pagani | Takashi Ito | David Adams | Melanie Talata De Almeida | R. Arts | V. Asnafi | B. Berkman | Bernhard. Boehm | M. Bussemakers | Enrique Carrillo-de-Santa-Pau | K. Chan | Luca Chiapperino | Nak Hyen Choi | M. Dermitzakis | E. Furlong | Sitanshu Gakkhar | T. Graf | Xin Guan | Kristian Helin | Steven C. Hill | J. Hilton | B. Hitz | Joo-Yeon Hwang | Saša Jenko | Hee Gyung Kang | A. Kiemer | S. Kim | Hyeon-Hoe Kim | Hiroshi Kimura | In-Uk Koh | C. Kressler | Daniel H.S. Lee | E. Leitão | R. D. Leslie | G. Leung | Markus Loeffler | E. R. Marcotte | Totai Mitsuyama | Hiroaki Okae | F. Ouellette | Ronak Y Patel | Andreas Dr Radbruch | Vardham Rakyan | M. Rothstein | Abdulrahman Salhab | Hiroyuki Sasaki | C. Schacht | G. Schmitz | Christopher Schröder | Ronald P. Schulyer | T. Sierocinski | M. Spivakov | P. Südbeck | Narumi Suzuki | Yutaka Suzuki | S. Ullrich | A. Valencia | S. Wallner | S. Weber | Nina Weiler | Andreas Weller | Steven E. Wilder | Yasuhiro Yamashita | Xinyi Yang | K. Yip | Jae-il Yoo | David J. Roberts | Myrto A. Kostadima | S. Schreiber | H. Okae | R. Moore | P. Südbeck | C. Merten | C. Schröder | Francis Ouellette | V. Onuchic | S. Jenko | R. Harris | Paul Flicek | Laura Clarke | Bernhard O. Boehm | David Richardson | Steven J. M. Jones | Shyam Prabhakar | K. Bassler | Eileen Furlong | Laura Arrigoni | J. Martín‐Subero
[1] Ho-Ryun Chung,et al. reChIP-seq reveals widespread bivalency of H3K4me3 and H3K27me3 in CD4+ memory T cells , 2016, Nature Communications.
[2] Adrian V. Lee,et al. Epigenomic Deconvolution of Breast Tumors Reveals Metabolic Coupling between Constituent Cell Types. , 2016, Cell reports.
[3] S. Beck,et al. From profiles to function in epigenomics , 2016, Nature Reviews Genetics.
[4] H. Stunnenberg,et al. c-Myc Modulation and Acetylation Is a Key HDAC Inhibitor Target in Cancer , 2016, Clinical Cancer Research.
[5] V. Rakyan,et al. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice , 2016, Science.
[6] I. Amit,et al. Co-ChIP enables genome-wide mapping of histone mark co-occurrence at single-molecule resolution , 2016, Nature Biotechnology.
[7] H. Stunnenberg,et al. Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells , 2016, Immunity.
[8] M. Suyama,et al. Allele-Specific Methylome and Transcriptome Analysis Reveals Widespread Imprinting in the Human Placenta. , 2016, American journal of human genetics.
[9] A. Valencia,et al. CD8+ T Cells from Human Neonates Are Biased toward an Innate Immune Response. , 2016, Cell reports.
[10] Pierre-Étienne Jacques,et al. The International Human Epigenome Consortium Data Portal. , 2016, Cell systems.
[11] Peter A. Jones,et al. Moving AHEAD with an international human epigenome project , 2008, Nature.
[12] Peter A. Jones,et al. A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. , 2005, Cancer research.
[13] Michael J. Ziller,et al. Information recovery from low coverage whole-genome bisulfite sequencing , 2016, Nature Communications.
[14] Alfonso Valencia,et al. The BLUEPRINT Data Analysis Portal. , 2016, Cell systems.
[15] Renata Walewska,et al. Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory networks , 2016, Nature Communications.
[16] Anthony D. Schmitt,et al. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. , 2016, Cell reports.
[17] Kimberly Walter,et al. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications , 2016, Nature Biotechnology.
[18] Steven J. M. Jones,et al. Analysis of Normal Human Mammary Epigenomes Reveals Cell-Specific Active Enhancer States and Associated Transcription Factor Networks. , 2016, Cell reports.
[19] B. Knoppers,et al. Are Data Sharing and Privacy Protection Mutually Exclusive? , 2016, Cell.
[20] M. Hirst,et al. Nucleosome Density ChIP-Seq Identifies Distinct Chromatin Modification Signatures Associated with MNase Accessibility. , 2016, Cell reports.
[21] Steven J. M. Jones,et al. Genome-Wide Profiles of Extra-cranial Malignant Rhabdoid Tumors Reveal Heterogeneity and Dysregulated Developmental Pathways. , 2016, Cancer cell.
[22] Vivien A. C. Schoonenberg,et al. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance , 2016, Cell.
[23] Marcel H. Schulz,et al. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction , 2016, bioRxiv.
[24] Jonathan M. Cairns,et al. Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters , 2016, Cell.
[25] A. Valencia,et al. Epigenomic co-localization and co-evolution reveal a key role for 5hmC as a communication hub in the chromatin network of ESCs , 2014, bioRxiv.
[26] E. Birney,et al. eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data , 2016, Cell reports.
[27] S. Beck,et al. From genomics to epigenomics: a loftier view of life , 1999, Nature Biotechnology.
[28] Thomas Lengauer,et al. DeepBlue epigenomic data server: programmatic data retrieval and analysis of epigenome region sets , 2016, Nucleic Acids Res..
[29] E. Giné,et al. Decoding the DNA Methylome of Mantle Cell Lymphoma in the Light of the Entire B Cell Lineage. , 2016, Cancer cell.
[30] Michael J. Ziller,et al. Saturation analysis for whole-genome bisulfite sequencing data , 2016, Nature Biotechnology.
[31] Alfonso Valencia,et al. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity , 2015, Genome Biology.
[32] D. Geschwind,et al. Histone Acetylome-wide Association Study of Autism Spectrum Disorder , 2016, Cell.
[33] Matthew T. Maurano,et al. Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells , 2016, Cell.
[34] René A. M. Dirks,et al. The Hematopoietic Transcription Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of the Apoptosis Program in t(8;21) AMLs. , 2016, Cell reports.
[35] Toby Hocking,et al. Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning , 2016, Bioinform..
[36] Richard A. Notebaart,et al. Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. , 2016, Cell metabolism.
[37] William J. Astle,et al. Allelic Landscape of Human Blood Cell Trait Variation and Links , 2016 .
[38] Manolis Kellis,et al. Soft X-Ray Tomography Reveals Gradual Chromatin Compaction and Reorganization during Neurogenesis In Vivo. , 2016, Cell reports.
[39] Thomas Lengauer,et al. DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation , 2016, Cell stem cell.
[40] Ronald P. Schuyler,et al. Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems , 2016, Cell reports.
[41] L. Altucci,et al. Identification and characterization of PKF118-310 as a KDM4A inhibitor , 2017, Epigenetics.
[42] Ho-Ryun Chung,et al. reChIP-seq reveals widespread bivalency of H 3 K 4 me 3 and H 3 K 27 me 3 in CD 4 þ memory T cells , 2016 .
[43] Stefan Wallner,et al. Epigenetic dynamics of monocyte-to-macrophage differentiation , 2016, Epigenetics & Chromatin.
[44] Paul Flicek,et al. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types , 2016, Nature Communications.
[45] Ho-Ryun Chung,et al. Epigenomic Profiling of Human CD4+ T Cells Supports a Linear Differentiation Model and Highlights Molecular Regulators of Memory Development. , 2016, Immunity.