Concave Programming in Control Theory

We show in the present paper that many open and challenging problems in control theory belong the the class of concave minimization programs. More precisely, these problems can be recast as the minimization of a concave objective function over convex LMI (Linear Matrix Inequality) constraints. As concave programming is the best studied class of problems in global optimization, several concave programs such as simplicial and conical partitioning algorithms can be used for the resolution. Moreover, these global techniques can be combined with a local Frank and Wolfe feasible direction algorithm and improved by the use of specialized stopping criteria, hence reducing the overall computational overhead. In this respect, the proposed hybrid optimization scheme can be considered as a new line of attack for solving hard control problems.Computational experiments indicate the viability of our algorithms, and that in the worst case they require the solution of a few LMI programs. Power and efficiency of the algorithms are demonstrated for a realistic inverted-pendulum control problem.Overall, this dedication reflects the key role that concavity and LMIs play in difficult control problems.

[1]  G. Scorletti,et al.  Improved linear matrix inequality conditions for gain scheduling , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[2]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[3]  Carsten W. Scherer,et al.  Multi-Objective Output-Feedback Control via LMI Optimization , 1996 .

[4]  Olvi L. Mangasarian,et al.  The Extended Linear Complementarity Problem , 1995, SIAM J. Matrix Anal. Appl..

[5]  H. Tuy Convex analysis and global optimization , 1998 .

[6]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[7]  Karolos M. Grigoriadis,et al.  Low-order control design for LMI problems using alternating projection methods , 1996, Autom..

[8]  H. Tuy,et al.  D.C. optimization approach to robust control: Feasibility problems , 2000 .

[9]  P. Apkarian,et al.  LPV techniques for control of an inverted pendulum , 1999, IEEE Control Systems.

[10]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[11]  IwasakiT.,et al.  All controllers for the general H control problem , 1994 .

[12]  Anders Helmersson,et al.  Methods for robust gain scheduling , 1995 .

[13]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[14]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[15]  A. M. Li︠a︡punov Problème général de la stabilité du mouvement , 1949 .

[16]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[17]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[18]  P. Apkarian,et al.  A new Lagrangian dual global optimization algorithm for solving bilinear matrix inequalities , 2000, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[19]  A. Packard,et al.  A collection of robust control problems leading to LMIs , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[20]  P. T. Thach,et al.  Optimization on Low Rank Nonconvex Structures , 1996 .

[21]  S. Hara,et al.  The matrix product eigenvalues problem - global optimization for the spectral radius of a matrix product under convex constraints , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[22]  J. Willems,et al.  The Dissipation Inequality and the Algebraic Riccati Equation , 1991 .

[23]  Robert E. Skelton,et al.  Static output feedback controllers: stability and convexity , 1998, IEEE Trans. Autom. Control..

[24]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[25]  Tetsuya Iwasaki,et al.  The dual iteration for fixed-order control , 1999, IEEE Trans. Autom. Control..

[26]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[27]  P. Apkarian,et al.  Robust control via concave minimization local and global algorithms , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[28]  W. A. Coppel Matrix quadratic equations , 1974, Bulletin of the Australian Mathematical Society.

[29]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[30]  P. Gahinet,et al.  A Convex Characterization of Gain-Scheduled H-Infinity Controllers (Vol 40, Pg 853, 1995) , 1995 .

[31]  P. Apkarian,et al.  A new Lagrangian dual global optimization algorithm for solving bilinear matrix inequalities , 2000, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[32]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[33]  Kristin P. Bennett,et al.  Bilinear separation of two sets inn-space , 1993, Comput. Optim. Appl..

[34]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..