Visible Information about Structure from Motion

Publisher Summary The purpose of this chapter is to examine how changing images constitute information for vision. The concept of information is critical to understanding the relationship between objects, images, and perceptions. Environments and objects are visible by virtue of the information their images contain. Differences among theories of perception usually stem from differing assumptions about the form of image information. The term information has become ubiquitous in psychology, but all too often the term has a little or no meaning or is even misleading. Before considering how information may be contained in changing images, it is useful to clarify the concept of information.

[1]  W. D. Craft,et al.  Spatial primitives for seeing 3D shape from motion , 1993 .

[2]  C. Hofsten,et al.  Spatial determinants of depth perception in two-dot motion patterns , 1972 .

[3]  W. R. Garner The Processing of Information and Structure , 1974 .

[4]  W. R. Garner Uncertainty and structure as psychological concepts , 1975 .

[5]  Gustav Theodor Fechner,et al.  Elements of psychophysics , 1966 .

[6]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[7]  A. Gray Modern Differential Geometry of Curves and Surfaces , 1993 .

[8]  J T Todd,et al.  The visual perception of smoothly curved surfaces from minimal apparent motion sequences , 1991, Perception & psychophysics.

[9]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[10]  J T Todd,et al.  The perceptual analysis of structure from motion for rotating objects undergoing affine stretching transformations , 1993, Perception & psychophysics.

[11]  J. Gibson,et al.  Motion parallax as a determinant of perceived depth. , 1959, Journal of experimental psychology.

[12]  D. D. Hoffman,et al.  The interpretation of biological motion , 1982, Biological Cybernetics.

[13]  J. Koenderink,et al.  Geometry of binocular vision and a model for stereopsis , 2004, Biological Cybernetics.

[14]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[15]  J. Gibson The Senses Considered As Perceptual Systems , 1967 .

[16]  R. Hyman Stimulus information as a determinant of reaction time. , 1953, Journal of experimental psychology.

[17]  Claes von Hofsten,et al.  Visual perception of motion in depth: Application of a vector model to three-dot motion patterns , 1973 .

[18]  H. Wallach,et al.  The kinetic depth effect. , 1953, Journal of experimental psychology.

[19]  Lawrence K. Cormack,et al.  Hyperacuity, superresolution and gap resolution in human stereopsis , 1989, Vision Research.

[20]  J. Koenderink,et al.  Illuminance critical points on generic smooth surfaces , 1993 .

[21]  E Börjesson,et al.  Motion structure in five-dot patterns as a determinant of perceptual grouping , 1993, Perception & psychophysics.

[22]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[23]  J S Lappin,et al.  Planar motion permits perception of metric structure in stereopsis , 1992, Perception & psychophysics.

[24]  J S Lappin,et al.  On the scaling of visual space from motion—in response to Pizlo and Salacfa-Golyska , 1994, Perception & psychophysics.

[25]  Jan J. Koenderink,et al.  An internal representation for solid shape based on the topological properties of the apparent contour , 1987 .

[26]  J E Cutting,et al.  Rigidity in cinema seen from the front row, side aisle. , 1987, Journal of experimental psychology. Human perception and performance.

[27]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  W. Simpson Optic flow and depth perception. , 1993, Spatial vision.

[29]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[30]  D R Proffitt,et al.  Comparing depth from motion with depth from binocular disparity. , 1995, Journal of experimental psychology. Human perception and performance.

[31]  Mark A. Schmuckler,et al.  The perception of natural contour. , 1993 .

[32]  J. Koenderink,et al.  Second-order optic flow , 1992 .

[33]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[34]  Jan J. Koenderink,et al.  Local features of smooth shapes: ridges and courses , 1993, Optics & Photonics.

[35]  J. Koenderink,et al.  The Shape of Smooth Objects and the Way Contours End , 1982, Perception.

[36]  S W Zucker,et al.  The Discriminability of Smooth Stereoscopic Surfaces , 1991, Perception.

[37]  B. Bertenthal,et al.  Infant sensitivity to figural coherence in biomechanical motions. , 1984, Journal of experimental child psychology.

[38]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[39]  Jan J. Koenderink,et al.  Local structure of movement parallax of the plane , 1976 .

[40]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[41]  R. Blake Cats Perceive Biological Motion , 1993 .

[42]  E. Adelson,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[43]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[44]  J. J. Koenderink,et al.  Dynamic shape , 1986, Biological Cybernetics.

[45]  Norbert Wiener,et al.  Cybernetics: Control and Communication in the Animal and the Machine. , 1949 .

[46]  B. Julesz,et al.  On perceptual analyzers underlying visual texture discrimination: Part II , 1978, Biological Cybernetics.

[47]  J. Koenderink,et al.  Photometric Invariants Related to Solid Shape , 1980 .

[48]  J F Norman,et al.  The Detectability of Geometric Structure in Rapidly Changing Optical Patterns , 1991, Perception.

[49]  Michael S. Landy,et al.  Integration of stereopsis and motion shape cues , 1994, Vision Research.

[50]  James T. Todd,et al.  Systematic distortion of perceived three-dimensional structure from motion and binocular stereopsis. , 1995 .

[51]  R. Barnden Calculation of Axial Polychromatic Optical Transfer Function , 1974 .

[52]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[53]  Ellen C. Hildreth,et al.  Computations Underlying the Measurement of Visual Motion , 1984, Artif. Intell..

[54]  B. Rogers,et al.  Anisotropies in the perception of three-dimensional surfaces. , 1983, Science.

[55]  Donald D. Hoffman,et al.  Interpolation in structure from motion , 1992, Perception & psychophysics.

[56]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[57]  J S Lappin,et al.  Accurate visual measurement of three-dimensional moving patterns. , 1983, Science.

[58]  M. Braunstein Depth perception through motion , 1976 .

[59]  J. Droulez,et al.  Visual perception of surface curvature: Psychophysics of curvature detection induced by motion parallax , 1989, Perception & psychophysics.

[60]  J. M. Midgley Drug design centred , 1984, Nature.

[61]  J F Norman,et al.  The detection of surface curvatures defined by optical motion , 1992, Perception & psychophysics.