Linear Rank-Width of Distance-Hereditary Graphs

We present a characterization of the linear rank-width of distance-hereditary graphs. Using the characterization, we show that the linear rank-width of every \(n\)-vertex distance-hereditary graph can be computed in time \(\mathcal {O}(n^2\cdot \log (n))\), and a linear layout witnessing the linear rank-width can be computed with the same time complexity. For our characterization, we combine modifications of canonical split decompositions with an idea of [Megiddo, Hakimi, Garey, Johnson, Papadimitriou: The complexity of searching a graph. JACM 1988], used for computing the path-width of trees. We also provide a set of distance-hereditary graphs which contains the set of distance-hereditary vertex-minor obstructions for linear rank-width. The set given in [Jeong, Kwon, Oum: Excluded vertex-minors for graphs of linear rank-width at most k. STACS 2013: 221–232] is a subset of our obstruction set.

[1]  Emeric Gioan,et al.  Split decomposition and graph-labelled trees: characterizations and fully-dynamic algorithms for totally decomposable graphs , 2008, Discret. Appl. Math..

[2]  Arthur M. Farley,et al.  Obstructions for linear rank-width at most 1 , 2014, Discret. Appl. Math..

[3]  Cyril Gavoille,et al.  Distance labeling scheme and split decomposition , 2003, Discret. Math..

[4]  Udi Rotics,et al.  Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..

[5]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[6]  Öjvind Johansson,et al.  Graph Decomposition Using Node Labels , 2001 .

[7]  Navin Kashyap Matroid Pathwidth and Code Trellis Complexity , 2008, SIAM J. Discret. Math..

[8]  Elias Dahlhaus,et al.  Parallel Algorithms for Hierarchical Clustering and Applications to Split Decomposition and Parity Graph Recognition , 2000, J. Algorithms.

[9]  Dieter Kratsch,et al.  Computing Treewidth and Minimum Fill-In: All You Need are the Minimal Separators , 1993, ESA.

[10]  Arthur M. Farley,et al.  Obstructions for linear rankwidth at most 1 , 2011, ArXiv.

[11]  O-joung Kwon,et al.  Excluded vertex-minors for graphs of linear rank-width at most k , 2013, STACS.

[12]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[13]  Bert Gerards,et al.  Branch-Width and Well-Quasi-Ordering in Matroids and Graphs , 2002, J. Comb. Theory, Ser. B.

[14]  Atsushi Takahashi,et al.  Minimal acyclic forbidden minors for the family of graphs with bounded path-width , 1994, Discret. Math..

[15]  Mamadou Moustapha Kanté,et al.  Linear Rank-Width and Linear Clique-Width of Trees , 2013, WG.

[16]  W. T. Tutte A homotopy theorem for matroids. II , 1958 .

[17]  J. Edmonds,et al.  A Combinatorial Decomposition Theory , 1980, Canadian Journal of Mathematics.

[18]  Ivan Hal Sudborough,et al.  The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..

[19]  Christos H. Papadimitriou,et al.  The complexity of searching a graph , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[20]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[21]  André Bouchet Transforming trees by successive local complementations , 1988, J. Graph Theory.

[22]  James F. Geelen,et al.  Circle graph obstructions under pivoting , 2009, J. Graph Theory.

[23]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory B.

[24]  Robert Ganian Thread Graphs, Linear Rank-Width and Their Algorithmic Applications , 2010, IWOCA.