Mass redistribution method for finite element contact problems in elastodynamics

This paper is devoted to a new method dealing with the semi-discretized finite element unilateral contact problem in elastodynamics. This problem is ill-posed mainly because the nodes on the contact surface have their own inertia. We introduce a method based on an equivalent redistribution of the mass matrix such that there is no inertia on the contact boundary. This leads to a mathematically well-posed and energy conserving problem. Finally, some numerical tests are presented.

[1]  J. Moreau Numerical aspects of the sweeping process , 1999 .

[2]  Houari Boumediène Khenous Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. , 2005 .

[3]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[4]  Yves Renard,et al.  Surface perturbation of an elastodynamic contact problem with friction , 2003, European Journal of Applied Mathematics.

[5]  T. Laursen,et al.  Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.

[6]  J. Moreau Liaisons unilatérales sans frottement et chocs inélastiques , 1983 .

[7]  Robert L. Taylor,et al.  On a finite element method for dynamic contact/impact problems , 1993 .

[8]  J. U. Kim,et al.  A boundary thin obstacle problem for a wave equation , 1989 .

[9]  Laetitia Paoli,et al.  Time discretization of vibro‐impact , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  A. Curnier,et al.  A finite element method for a class of contact-impact problems , 1976 .

[11]  L. Paoli,et al.  Approximation et existence en vibro-impact , 1999 .

[12]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[13]  R. Taylor,et al.  Lagrange constraints for transient finite element surface contact , 1991 .

[14]  F. Armero,et al.  Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .

[15]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[16]  Michelle Schatzman,et al.  A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .

[17]  Laetitia Paoli,et al.  Vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie , 1993 .

[18]  A numerical solution for dynamic contact problems satisfying the velocity and acceleration compatibilities on the contact surface , 1994 .

[19]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[20]  Patrick Laborde,et al.  Comparison of two approaches for the discretization of elastodynamic contact problems , 2006 .

[21]  Yves Renard,et al.  Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers , 2006 .

[22]  F. Lebon,et al.  Contact problems with friction: models and simulations , 2003, Simul. Model. Pract. Theory.

[23]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[24]  B. Sharma,et al.  International Centre for Mechanical Science , 1973 .