Determining the regularization parameters for super-resolution problems

We derive a novel method to determine the parameters for regularized super-resolution problems, addressing both the traditional regularized super-resolution problem with single- and multiple-parameters and the simultaneous super-resolution problem with two parameters. The proposal relies on the joint maximum a posteriori (JMAP) estimation technique. The classical JMAP technique provides solutions at low computational cost, but it may be unstable and presents multiple local minima. We propose to stabilize the JMAP estimation, while achieving a cost function with a unique global solution, by assuming a gamma prior distribution for the hyperparameters. The resulting fidelity is similar to the quality provided by classical methods such as GCV, L-curve and Evidence, which are computationally expensive. Experimental results illustrate the low complexity and stability of the proposed method.

[1]  Peyman Milanfar,et al.  A computationally efficient superresolution image reconstruction algorithm , 2001, IEEE Trans. Image Process..

[2]  Ali Mohammad-Djafari,et al.  Joint estimation of parameters and hyperparameters in a Bayesian approach of solving inverse problems , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[3]  Alan C. Bovik,et al.  Handbook of Image and Video Processing (Communications, Networking and Multimedia) , 2005 .

[4]  A. El Gamal,et al.  CMOS image sensors , 2005, IEEE Circuits and Devices Magazine.

[5]  Jerry D. Gibson,et al.  Handbook of Image and Video Processing , 2000 .

[6]  Harrison H. Barrett,et al.  Foundations of Image Science , 2003, J. Electronic Imaging.

[7]  Aggelos K. Katsaggelos,et al.  Parameter estimation in Bayesian high-resolution image reconstruction with multisensors , 2003, IEEE Trans. Image Process..

[8]  Min-Cheol Hong,et al.  An iterative weighted regularized algorithm for improving the resolution of video sequences , 1997, Proceedings of International Conference on Image Processing.

[9]  Teresa Reginska,et al.  A Regularization Parameter in Discrete Ill-Posed Problems , 1996, SIAM J. Sci. Comput..

[10]  Aggelos K. Katsaggelos,et al.  Resolution enhancement of video sequences using motion compensation , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[11]  Robert L. Stevenson,et al.  Simultaneous multi-frame MAP super-resolution video enhancement using spatio-temporal priors , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[12]  Kiyoharu Aizawa,et al.  A scheme for acquiring very high resolution images using multiple cameras , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[14]  Michal Irani,et al.  Motion Analysis for Image Enhancement: Resolution, Occlusion, and Transparency , 1993, J. Vis. Commun. Image Represent..

[15]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[16]  Fermín S. Viloche Bazán,et al.  Determining the parameters in regularized super-resolution reconstruction , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[17]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[18]  Moon Gi Kang,et al.  Super-resolution image reconstruction: a technical overview , 2003, IEEE Signal Process. Mag..

[19]  Michal Irani,et al.  Improving resolution by image registration , 1991, CVGIP Graph. Model. Image Process..

[20]  Robert L. Stevenson,et al.  Extraction of high-resolution frames from video sequences , 1996, IEEE Trans. Image Process..

[21]  A. Murat Tekalp,et al.  Robust, object-based high-resolution image reconstruction from low-resolution video , 1997, IEEE Trans. Image Process..

[22]  Aggelos K. Katsaggelos,et al.  General choice of the regularization functional in regularized image restoration , 1995, IEEE Trans. Image Process..

[23]  Joceli Mayer,et al.  A Robust and Computationally Efficient Simultaneous Super-Resolution Scheme for Image Sequences , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[24]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[25]  Russell C. Hardie,et al.  Joint MAP registration and high-resolution image estimation using a sequence of undersampled images , 1997, IEEE Trans. Image Process..

[26]  Roger Y. Tsai,et al.  Multiframe image restoration and registration , 1984 .

[27]  Nirmal K. Bose,et al.  Recursive reconstruction of high resolution image from noisy undersampled multiframes , 1990, IEEE Trans. Acoust. Speech Signal Process..

[28]  Robert L. Stevenson,et al.  Improved definition video frame enhancement , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[29]  Lisimachos P. Kondi,et al.  An image super-resolution algorithm for different error levels per frame , 2006, IEEE Transactions on Image Processing.

[30]  S. Chaudhuri Super-Resolution Imaging , 2001 .

[31]  C. Stiller,et al.  Estimating motion in image sequences , 1999, IEEE Signal Process. Mag..

[32]  Robert L. Stevenson,et al.  Linear models for multiframe super-resolution restoration under nonaffine registration and spatially varying PSF , 2004, IS&T/SPIE Electronic Imaging.

[33]  Michael Elad,et al.  Fast and robust multiframe super resolution , 2004, IEEE Transactions on Image Processing.

[34]  Li Meng,et al.  Subpixel Motion Estimation for Super-Resolution Image Sequence Enhancement , 1998, J. Vis. Commun. Image Represent..

[35]  A. Murat Tekalp,et al.  High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[36]  Aggelos K. Katsaggelos,et al.  Bayesian and regularization methods for hyperparameter estimation in image restoration , 1999, IEEE Trans. Image Process..

[37]  Moon Gi Kang,et al.  Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration , 2003, IEEE Trans. Image Process..

[38]  Michael Elad,et al.  Fast and Robust Multi-Frame Super-Resolution , 2004, IEEE Transactions on Image Processing.

[39]  Joceli Mayer,et al.  Simultaneous super-resolution for video sequences , 2005, IEEE International Conference on Image Processing 2005.

[40]  Sabine Süsstrunk,et al.  Outlier Modeling in Image Matching , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Nirmal K. Bose,et al.  Advances in superresolution using L-curve , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[42]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[43]  A. Mohammad-Djafari A full Bayesian approach for inverse problems , 2001, physics/0111123.

[44]  Fermín S. V. Bazán,et al.  Fixed-point iterations in determining the Tikhonov regularization parameter , 2008 .

[45]  E. Miller,et al.  Efficient determination of multiple regularization parameters in a generalized L-curve framework , 2002 .

[46]  H Stark,et al.  High-resolution image recovery from image-plane arrays, using convex projections. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[47]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[48]  Robert L. Stevenson,et al.  Super-resolution from image sequences-a review , 1998, 1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268).

[49]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[50]  Joceli Mayer,et al.  Outlier Robust and Edge-Preserving Simultaneous Super-Resolution , 2006, 2006 International Conference on Image Processing.

[51]  Nikolas P. Galatsanos,et al.  Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..

[52]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .