Bacillus Calmette Guerin (BCG) Immunotherapy for Bladder Cancer: A Control and Mathematical Analysis

[1]  D. Baleanu,et al.  A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a novel fractional chaotic system , 2021, Advances in Difference Equations.

[2]  D. Baleanu,et al.  On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: a new fractional analysis and control , 2021, Advances in Differential Equations.

[3]  S. S. Sajjadi,et al.  Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system , 2021 .

[4]  Hesham A. Elkaranshawy,et al.  Mathematical Modelling for the Role of CD4+T Cells in Tumor-Immune Interactions , 2020, Comput. Math. Methods Medicine.

[5]  A. Akgül,et al.  Analysis and dynamical behavior of fractional‐order cancer model with vaccine strategy , 2020, Mathematical Methods in the Applied Sciences.

[6]  G. Samanta,et al.  Model Justification and Stratification for Confounding of Chlamydia Trachomatis Disease , 2019, Letters in Biomathematics.

[7]  Joseph Malinzi,et al.  Mathematical Analysis of a Mathematical Model of Chemovirotherapy: Effect of Drug Infusion Method , 2019, Comput. Math. Methods Medicine.

[8]  D. Asemani,et al.  MATHEMATICAL MODELING OF IN-VIVO TUMOR-IMMUNE INTERACTIONS FOR THE CANCER IMMUNOTHERAPY USING MATURED DENDRITIC CELLS , 2018 .

[9]  A. Cesano,et al.  Bringing the Next Generation of Immuno-Oncology Biomarkers to the Clinic , 2018, Biomedicines.

[10]  G. Carter,et al.  Medicinal use of cannabis in the United States: historical perspectives, current trends, and future directions. , 2018, Journal of opioid management.

[11]  M. O. Ahmad,et al.  Control of an artificial human pancreas , 2017 .

[12]  B. Vickrey,et al.  Cannabinoids for epilepsy. , 2014, The Cochrane database of systematic reviews.

[13]  M. Kanat Camlibel,et al.  Controllability of linear systems with input and state constraints , 2007, 2007 46th IEEE Conference on Decision and Control.

[14]  F Castiglione,et al.  Cancer immunotherapy, mathematical modeling and optimal control. , 2007, Journal of theoretical biology.

[15]  Svetlana Bunimovich-Mendrazitsky,et al.  Mathematical Model of BCG Immunotherapy in Superficial Bladder Cancer , 2007, Bulletin of mathematical biology.

[16]  J. Coron Control and Nonlinearity , 2007 .

[17]  S. Jonathan Chapman,et al.  Mathematical Models of Avascular Tumor Growth , 2007, SIAM Rev..

[18]  P. Maini,et al.  Modelling aspects of cancer dynamics: a review , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Héctor J. Sussmann,et al.  Regular Synthesis and Sufficiency Conditions for Optimality , 2000, SIAM J. Control. Optim..

[20]  L. Preziosi,et al.  Modelling and mathematical problems related to tumor evolution and its interaction with the immune system , 2000 .

[21]  M. Chaplain,et al.  Continuous and discrete mathematical models of tumor-induced angiogenesis , 1998, Bulletin of mathematical biology.

[22]  D. Kirschner,et al.  Modeling immunotherapy of the tumor – immune interaction , 1998, Journal of mathematical biology.

[23]  H. Shah,et al.  BMC Urology BioMed Central , 2004 .