Diamonds in Science

AbstractDiamond is crystallised carbon. No more, no less. And yet it is more, for many of its physical properties are determined in large measure by its impurities, which may include surprisingly large amounts of the light elements nitrogen, hydrogen, and oxygen. The result is a proliferation of diamond types and classes with different descriptions and applications, coming from an industry which worldwide produces some 40 tons or more per year of industrial diamond. Accordingly, this review begins with a brief historical introduction, and then describes in some detail the forms in which impurities may occur and their influence on the physical properties of diamond, before going on to some of the scientific uses of this material. In volume terms, these scientific uses account for but a minuscule proportion of the total industrial consumption, the chief of these being the drilling, sawing, grinding and shaping of hard materials. They are nevertheless of substantial interest in themselves and of great practi...

[1]  H. M. Strong,et al.  Transformation of the state of nitrogen in diamond , 1977, Nature.

[2]  Robert Robertson,et al.  Two types of diamond , 1934 .

[3]  H. Komatsu,et al.  Abundance of Type II Diamonds , 1967, Science.

[4]  G. Sutherland,et al.  The Problem of the Two Types of Diamond , 1954, Nature.

[5]  J.F.H. Custers,et al.  Unusual phosphorescence of a diamond , 1952 .

[6]  R. W. Ditchburn Diamond as an Optical Material for Space Optics , 1982 .

[7]  Samuel Tolansky,et al.  The history and use of diamond , 1962 .

[8]  Harold J. Annegarn,et al.  LIGHT VOLATILES IN DIAMOND: PHYSICAL INTERPRETATION AND GENETIC SIGNIFICANCE , 1980 .

[9]  E. A. Burgemeister,et al.  Thermal conductivities of diamonds with absorption at 3.22 µm , 1979, Nature.

[10]  W. L. Bond,et al.  Nitrogen, a major impurity in common type I diamond , 1959 .

[11]  A. R. Lang,et al.  X-ray Bragg reflexion, ‘spike’ reflexion and ultra-violet absorption topography of diamonds , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  J.F.H. Custers,et al.  Type IIb diamonds , 1954 .

[13]  R. Mcdonald,et al.  Infra-red Spectra of Diamond Coat , 1967, Nature.

[14]  Alan T. Collins,et al.  Sharp infra-red absorption lines in diamond. , 1984 .

[15]  M. Seal,et al.  The abrasion of diamond , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  P. Klemens Thermal Conductivity and Lattice Vibrational Modes , 1958 .

[17]  G. S. Woods,et al.  Infrared absorption spectra of hydrogen complexes in type I diamonds , 1983 .

[18]  John F. Healy,et al.  Pliny the Elder and Ancient Mineralogy , 1981 .

[19]  A. K. McMahan,et al.  New materials at high pressure , 1986 .

[20]  W. Bassett,et al.  The Diamond Cell and the Nature of the Earth's Mantle , 1979 .

[21]  T. Evans,et al.  Aggregation of nitrogen in diamond, including platelet formation , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  John O. Hallquist,et al.  Finite element analysis of the diamond anvil cell: Achieving 4.6 Mbar , 1986 .

[23]  A. Jayaraman,et al.  Diamond anvil cell and high-pressure physical investigations , 1983 .

[24]  Fritz Peter,et al.  Über Brechungsindizes und Absorptionskonstanten des Diamanten zwischen 644 und 226 mμ , 1923 .

[25]  C. T. Pillinger,et al.  Carbon isotopic variation in spectral type II diamonds , 1983, Nature.

[26]  T. Evans,et al.  Imperfections in type I and type II diamonds , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[27]  P. P. Sorokin,et al.  Electron-Spin Resonance of Nitrogen Donors in Diamond , 1959 .