The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter

Extraterrestrial organic matter in meteorites potentially retains a unique record of synthesis and chemical/thermal modification by parent body, nebular and even presolar processes. In a survey of the elemental and isotopic compositions of insoluble organic matter (IOM) from 75 carbonaceous, ordinary and enstatite chondrites, we find dramatic variations within and between chondrite classes. There is no evidence that these variations correlate with the time and/or location of chondrite formation, or with any primary petrologic or bulk compositional features that are associated with nebular processes (e.g., chondrule and volatile trace element abundances). Nor is there evidence for the formation of the IOM by Fischer–Tropsch-Type synthesis in the nebula or in the parent bodies. The elemental variations are consistent with thermal maturation and/or oxidation of a common precursor. For reasons that are unclear, there are large variations in isotopic composition within and between chondrite classes that do not correlate in a simple way with elemental composition or petrologic type. Nevertheless, because of the pattern of elemental variations with petrologic type and the lack of any correlation with the primary features of the chondrite classes, at present the most likely explanation is that all IOM compositional variations are the result of parent body processing of a common precursor. If correct, the range of isotopic compositions within and between chondrite classes implies that the IOM is composed of several isotopically distinct components whose relative stability varied with parent body conditions. The most primitive IOM is found in the CR chondrites and Bells (CM2). Isotopically, the IOM from these meteorites resembles the IOM in interplanetary dust particles. Chemically, their IOM resembles the CHON particles of comet Halley. Despite the large isotopic anomalies in the IOM from these meteorites, it is uncertain whether the IOM formed in the interstellar medium or the outer Solar System, although the former is preferred here.

[1]  Y. Pendleton,et al.  The Organic Refractory Material in the Diffuse Interstellar Medium: Mid-Infrared Spectroscopic Constraints , 2002 .

[2]  E. Herbst,et al.  Two-dimensional distributions and column densities of gaseous molecules , 1999, astro-ph/0202062.

[3]  H. Gail Radial mixing in protoplanetary accretion disks IV. Metamorphosis of the silicate dust complex , 2004 .

[4]  Chris Jacobsen,et al.  The nature of molecular cloud material in interplanetary dust , 2004 .

[5]  Turbulent Radial Mixing in the Solar Nebula as the Source of Crystalline Silicates in Comets , 2000 .

[6]  Hisayoshi Yurimoto,et al.  Molecular Cloud Origin for the Oxygen Isotope Heterogeneity in the Solar System , 2004, Science.

[7]  R. Clayton,et al.  The CR (Renazzo-type) carbonaceous chondrite group and its implications , 1993 .

[8]  J. Llorca,et al.  Reaction between H2, CO, and H2S over Fe, Ni metal in the solar nebula: Experimental evidence for the formation of sulfur‐bearing organic molecules and sulfides , 2000 .

[9]  G. Flynn Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust , 1989 .

[10]  L. Nittler Presolar stardust in meteorites : recent advances and scientific frontiers , 2003 .

[11]  George D. Cody,et al.  Solid-state ( 1 H and 13 C) nuclear magnetic resonance spectroscopy of insoluble organic residue in the Murchison meteorite: a self-consistent quantitative analysis , 2002 .

[12]  Th. Henning,et al.  The Structure and Appearance of Protostellar Accretion Disks: Limits on Disk Flaring , 1997 .

[13]  F. Robert,et al.  The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites☆ , 1982 .

[14]  Sumiko Matsuoka,et al.  Origin of organic matter in the early solar system—VII. The organic polymer in carbonaceous chondrites , 1977 .

[15]  G. Strazzulla Ion irradiation: its relevance to the evolution of complex organics in the outer solar system. , 1997, Advances in space research : the official journal of the Committee on Space Research.

[16]  I. Gilmour,et al.  1.10 – Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites , 2003 .

[17]  G. Cody,et al.  Molecular and compound-specific hydrogen isotope analyses of insoluble organic matter from different carbonaceous chondrite groups , 2005 .

[18]  G. Kletetschka,et al.  Determining the ages of comets from the fraction of crystalline dust , 2000, Nature.

[19]  Alan C. Mix,et al.  The oxygen-isotope record of glaciation , 1987 .

[20]  I. Hutcheon,et al.  Compositional Zoning and Mn-Cr Systematics in Carbonates from the Y791198 CM2 Carbonaceous Chondrite , 2001 .

[21]  A. Tielens,et al.  The Absence of Crystalline Silicates in the Diffuse Interstellar Medium , 2004, astro-ph/0403609.

[22]  K. Keil,et al.  The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites , 1981 .

[23]  D. Sears,et al.  The Colony meteorite and variations in CO3 chondrite properties , 1985 .

[24]  J. Llorca,et al.  Formation of carbides and hydrocarbons in chondritic interplanetary dust particles: A laboratory study , 1998 .

[25]  H. McSween Carbonaceous chondrites of the Ornans type - A metamorphic sequence , 1977 .

[26]  G. Cody,et al.  The insoluble carbonaceous material of CM chondrites: A possible source of discrete organic compounds under hydrothermal conditions , 2007 .

[27]  E. Dartois,et al.  Diffuse interstellar medium organic polymers: Photoproduction of the 3.4, 6.85 and 7.25 μm features , 2004 .

[28]  R. Clayton,et al.  The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .

[29]  C. Alexander Re‐examining the role of chondrules in producing the elemental fractionations in chondrites , 2005 .

[30]  D. Mckay,et al.  Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. , 1993, Geochimica et cosmochimica acta.

[31]  D. J. Barber,et al.  The microstructure of Semarkona and Bishunpur , 1989 .

[32]  D E Brownlee,et al.  Carbon Compounds in Interplanetary Dust: Evidence for Formation by Heterogeneous Catalysis , 1984, Science.

[33]  A. Brearley Aqueous alteration and brecciation in Bells, an unusual, saponite-bearing, CM chondrite , 1995 .

[34]  Alexander G. G. M. Tielens,et al.  Near-infrared absorption spectroscopy of interstellar hydrocarbon grains , 1994 .

[35]  J. Bradley Chemically Anomalous, Preaccretionally Irradiated Grains in Interplanetary Dust from Comets , 1994, Science.

[36]  G. Cody,et al.  The Insoluble Carbonaceous Material of CM Chondrites as Possible Source of Discrete Organics During the Asteroidal Aqueous Phase , 2005 .

[37]  L. Leshin,et al.  The oxygen isotopic composition of olivine and pyroxene from CI chondrites , 1997 .

[38]  S. Epstein,et al.  Relic interstellar grains in Murchison meteorite , 1984, Nature.

[39]  R. Wieler,et al.  Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed‐system stepped etching , 2000 .

[40]  Jeffrey N. Cuzzi,et al.  The evolution of the water distribution in a viscous protoplanetary disk , 2005, astro-ph/0511372.

[41]  E. Anders,et al.  Organic compounds in meteorites and their origins , 1981 .

[42]  A. Tielens,et al.  Erratum: “The Absence of Crystalline Silicates in the Diffuse Interstellar Medium” (ApJ, 609, 826 [2004]) , 2005 .

[43]  A. Brearley Ubiquitous Nanophase Fe,Ni Carbides in Murchison Fine-grained Rims: Possible Relicts of Nebular Fischer-Tropsch Reactions , 2003 .

[44]  G. Cody,et al.  Organics on Fe-Silicate Grains: Potential Mimicry of Meteoritic Processes? , 2004 .

[45]  H. McSween Petrographic variations among carbonaceous chondrites of the Vigarano type , 1977 .

[46]  P. Hoppe,et al.  Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites , 2006, Science.

[47]  R. Winans,et al.  Phenolic Ethers in the Organic Polymer of the Murchison Meteorite , 1980, Science.

[48]  A. Brearley Carbon-rich aggregates in type 3 ordinary chondrites: Characterization, origins, and thermal history , 1990 .

[49]  Two-dimensional Distributions and Column Densities of Gaseous Molecules in Protoplanetary Disks II . — Deuterated Species and UV Shielding by Ambient Clouds , 2005 .

[50]  A. P. Wolfe,et al.  Quantitative paleotemperature estimates from δ18O of chironomid head capsules preserved in arctic lake sediments , 2004 .

[51]  H. Gail,et al.  Radial mixing in protoplanetary accretion disks. VI. Mixing by large-scale radial flows , 2004 .

[52]  G. Huss,et al.  The “normal planetary” noble gas component in primitive chondrites: Compositions, carrier, and metamorphic history , 1996 .

[53]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[54]  Seiji Sugita,et al.  An experimental study on Fischer‐Tropsch catalysis: Implications for impact phenomena and nebular chemistry , 2006 .

[55]  Katherine C. Gordon THE EUGENE MEETING OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC , 1960 .

[56]  F. R. Krueger,et al.  The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1 , 1987, Nature.

[57]  L. Keller A transmission electron microscope study of iron‐nickel carbides in the matrix of the Semarkona unequilibrated ordinary chondrite , 1998 .

[58]  S. Derenne,et al.  Solid state CP/MAS 13 C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: quantitative study , 2000 .

[59]  S. Bajt,et al.  An Astronomical 2175 Å Feature in Interplanetary Dust Particles , 2005, Science.

[60]  A. Brearley,et al.  Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites , 2000 .

[61]  ’. R.HUTCHISON The Semarkona meteorite : First recorded occurrence of smectite in an ordinary chondrite , and its implications , 2002 .

[62]  D. Brownlee,et al.  Major element composition of stratospheric micrometeorites , 1989 .

[63]  J. Nuth,et al.  Laboratory Studies of Catalysis of CO to Organics on Grain Analogs , 2000 .

[64]  J. Lyons,et al.  CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula , 2005, Nature.

[65]  C. Woodward,et al.  Thermal Emission From The Dust Coma Of Comet Hale-Bopp And The Composition Of The Silicate Grains , 1997 .

[66]  U. Dürr,et al.  Near-infrared absorption of MgF2:Fe2+ , 1974 .

[67]  Young,et al.  Fluid flow in chondritic parent bodies: deciphering the compositions of planetesimals , 1999, Science.

[68]  G. Cody,et al.  NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups , 2005 .

[69]  Shogo Tachibana,et al.  Correlation between relative ages inferred from 26Al and bulk compositions of ferromagnesian chondrules in least equilibrated ordinary chondrites , 2003 .

[70]  M. Zolensky,et al.  Carbide-magnetite assemblages in type-3 ordinary chondrites , 1997 .

[71]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[72]  Pierre Cartigny,et al.  Lead Isotopic Ages of Chondrules and Calcium-Aluminum – Rich Inclusions , 2022 .

[73]  Ian Wright,et al.  Investigating the variations in carbon and nitrogen isotopes in carbonaceous chondrites , 2003 .

[74]  C. Woodward,et al.  The Dust Grains from 9P/Tempel 1 Before and After the Encounter with Deep Impact , 2005, Science.

[75]  E. Anders,et al.  Origin of Organic Matter in Early Solar System-V , 1972 .

[76]  C. Snape,et al.  Hydropyrolysis: A new technique for the analysis of macromolecular material in meteorites , 2005 .

[77]  G. J. Taylor Interstellar Organic Matter in Meteorites , 2006 .

[78]  I. Gilmour Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites , 2005 .

[79]  S. Desch,et al.  A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules , 2002 .

[80]  Gary R. Huss,et al.  PRESOLAR DIAMOND, SIC, AND GRAPHITE IN PRIMITIVE CHONDRITES : ABUNDANCES AS A FUNCTION OF METEORITE CLASS AND PETROLOGIC TYPE , 1995 .

[81]  L. Keller,et al.  Are There Clues to the Dust 'Annealing' Process in Protoplanetary Disks in IDPs? , 2006 .

[82]  C. Floss,et al.  Isotopically Primitive Interplanetary Dust Particles of Cometary Origin: Evidence from Nitrogen Isotopic Compositions , 2004 .

[83]  Y. Morishita,et al.  Contemporaneous Formation of Chondrules in the Al-26-MG-26 System for Ordinary and CO Chondrites , 2004 .

[84]  L. Leshin,et al.  Carbonates in CM2 chondrites: constraints on alteration conditions from oxygen isotopic compositions and petrographic observations , 2003 .

[85]  G. Flynn,et al.  The origin of organic matter in the solar system: Evidence from the interplanetary dust particles , 2003 .

[86]  H. Moser,et al.  A new method of measuring , 1999 .

[87]  S. Epstein,et al.  Interstellar organic matter in meteorites , 1983 .

[88]  P. Buseck,et al.  Nanosized carbon-rich grains in carbonaceous chondrite meteorites , 2004 .

[89]  E. Feigelson,et al.  A New Mechanism for the Formation of Meteoritic Kerogen-Like Material , 1991, Science.

[90]  H. Schobert,et al.  A New Method for Measuring the Graphite Content of Anthracite Coals and Soots , 2002 .

[91]  A. Tielens,et al.  The role of Fischer‐Tropsch catalysis in solar nebula chemistry , 2001 .

[92]  G. Huss,et al.  Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula , 2003 .

[93]  A. Brearley In Situ Location and Characterization of Carbon-bearing Phases in Carbonaceous Chondrites: Insights from Yamato 791198, a Weakly-altered CM2 Chondrite , 2004 .

[94]  D. J. Barber,et al.  The Semarkona meteorite: First recorded occurrence of smectite in an ordinary chondrite, and its implications , 1987 .

[95]  H. Laborit,et al.  [Experimental study]. , 1958, Bulletin mensuel - Societe de medecine militaire francaise.

[96]  S. Sandford,et al.  A multicomponent model of the infrared emission from Comet Halley , 1988 .

[97]  François Robert,et al.  Enrichment of deuterium in insoluble organic matter from primitive meteorites: A solar system origin? , 2006 .

[98]  Andrew Steele,et al.  Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft , 2006, Science.

[99]  Michael E. Zolensky,et al.  Organic Globules in the Tagish Lake Meteorite: Remnants of the Protosolar Disk , 2006, Science.

[100]  C. Pillinger,et al.  Carbon, nitrogen and hydrogen in Saharan chondrites: The importance of weathering , 1995 .

[101]  C. T. Pillinger,et al.  Aromatic moieties in meteoritic macromolecular materials: analyses by hydrous pyrolysis and δ13C of individual compounds , 2000 .

[102]  C. Pillinger,et al.  The origin of chondritic macromolecular organic matter: A carbon and nitrogen isotope study , 1998, Meteoritics & planetary science.

[103]  R. Christoffersen,et al.  Epsilon Carbide: A Low-Temperature Component of Interplanetary Dust Particles , 1983, Science.

[104]  Leiden Observatory,et al.  Warm molecular layers in protoplanetary disks , 2002, astro-ph/0202060.

[105]  D. Brownlee,et al.  An infrared spectral match between GEMS and interstellar grains. , 1999, Science.

[106]  Michael E. Zolensky,et al.  Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite , 2002 .

[107]  Ian A. Franchi,et al.  Light dement geochemistry of the Tagish Lake CI2 chondrite: Comparison with CI1 and CM2 meteorites , 2002 .

[108]  J. Brucato,et al.  C-H Bond Formation in Carbon Grains by Exposure to Atomic Hydrogen: The Evolution of the Carrier of the Interstellar 3.4 Micron Band , 2002 .

[109]  C. Pillinger,et al.  A Preliminary Investigation into the Nature of Carbonaceous Material in Ordinary Chondrites , 1989 .

[110]  A. Boss,et al.  Astronomical and Meteoritic Evidence for the Nature of Interstellar Dust and Its Processing in Protoplanetary Disks , 2007 .

[111]  C. Snape,et al.  Hydropyrolysis of insoluble carbonaceous matter in the Murchison meteorite , 2004 .

[112]  S. Derenne,et al.  New insight on aliphatic linkages in the macromolecular organic fraction of Orgueil and Murchison meteorites through ruthenium tetroxide oxidation , 2005 .