Disentangling catalysis and mass transport: using diffusion measurements by pulsed field gradient NMR to reveal the microkinetics of CO oxidation over nanoporous gold

[1]  Matthew M. Montemore,et al.  Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. , 2022, Chemical reviews.

[2]  T. Risse,et al.  Thermal Activation of Nanoporous Gold for Carbon Monoxide Oxidation , 2022, The Journal of Physical Chemistry C.

[3]  J. Kärger,et al.  Pulsed field gradient NMR diffusion measurement in nanoporous materials , 2021, Adsorption.

[4]  Wittstock,et al.  Synergistic Effect in Zinc Phthalocyanine—Nanoporous Gold Hybrid Materials for Enhanced Photocatalytic Oxidations , 2019, Catalysts.

[5]  L. Moskaleva,et al.  Understanding Oxygen Activation on Nanoporous Gold , 2019, ACS Catalysis.

[6]  A. Falqui,et al.  Ag surface segregation in nanoporous Au catalysts during CO oxidation , 2018, Scientific Reports.

[7]  Q. Mei,et al.  Effects of Cold Rolling and Annealing Prior to Dealloying on the Microstructure of Nanoporous Gold , 2018, Nanomaterials.

[8]  M. Demkowicz,et al.  Gaining new insights into nanoporous gold by mining and analysis of published images , 2018, Scientific Reports.

[9]  J. Weissmüller,et al.  A comparative study of alcohol oxidation over nanoporous gold in gas and liquid phase , 2017 .

[10]  Nigel P. Brandon,et al.  TauFactor: An open-source application for calculating tortuosity factors from tomographic data , 2016, SoftwareX.

[11]  M. Bäumer,et al.  The origin of a large apparent tortuosity factor for the Knudsen diffusion inside monoliths of a samaria-alumina aerogel catalyst: a diffusion NMR study. , 2015, Physical chemistry chemical physics : PCCP.

[12]  Juergen Biener,et al.  Ozone-Activated Nanoporous Gold: A Stable and Storable Material for Catalytic Oxidation , 2015 .

[13]  M. Ritter,et al.  Porous Gold with a Nested‐Network Architecture and Ultrafine Structure , 2015 .

[14]  Peter J. Miedziak,et al.  Deactivation studies of a carbon supported AuPt nanoparticulate catalyst in the liquid-phase aerobic oxidation of 1,2-propanediol , 2014 .

[15]  Xiaowu Tang,et al.  Numerical simulation for tortuosity of porous media , 2013 .

[16]  M. Bäumer,et al.  CO oxidation on nanoporous gold: A combined TPD and XPS study of active catalysts , 2013 .

[17]  D. Sholl,et al.  Diffusion of Tetrafluoromethane in Single-Walled Aluminosilicate Nanotubes: Pulsed Field Gradient NMR and Molecular Dynamics Simulations , 2012 .

[18]  R. Behm,et al.  On the Role of Residual Ag in Nanoporous Au Catalysts for CO Oxidation: A Combined Microreactor and TAP Reactor Study , 2012 .

[19]  Konstantin M. Neyman,et al.  Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold. , 2011, Physical chemistry chemical physics : PCCP.

[20]  G. Hutchings,et al.  Pulsed-Field Gradient NMR Spectroscopic Studies of Alcohols in Supported Gold Catalysts† , 2011 .

[21]  M. Bäumer,et al.  Nanoporous gold: a new material for catalytic and sensor applications. , 2010, Physical chemistry chemical physics : PCCP.

[22]  M. Bäumer,et al.  Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature , 2010, Science.

[23]  F. Solymosi,et al.  Activation and Reactions of CO2 on a K-Promoted Au(111) Surface , 2009 .

[24]  M. Bäumer,et al.  Nanoporous Au: An Unsupported Pure Gold Catalyst? , 2008 .

[25]  Xiaohong Xu,et al.  Research on unsupported nanoporous gold catalyst for CO oxidation , 2007 .

[26]  R. Bouchet,et al.  Tortuosity of porous particles. , 2007, Analytical chemistry.

[27]  Xiaohong Xu,et al.  Low temperature CO oxidation over unsupported nanoporous gold. , 2007, Journal of the American Chemical Society.

[28]  M. Bäumer,et al.  Gold catalysts: nanoporous gold foams. , 2006, Angewandte Chemie.

[29]  K. Oh,et al.  Recrystallization and grain growth of cold-rolled gold sheet , 2005 .

[30]  J. Kärger,et al.  Quantitation of diffusion in zeolite catalysts , 2005 .

[31]  Jens K Nørskov,et al.  Catalytic CO oxidation by a gold nanoparticle: a density functional study. , 2002, Journal of the American Chemical Society.

[32]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[33]  J. Nørskov,et al.  Making gold less noble , 2000 .

[34]  R. A. Aziz,et al.  Accurate transport properties and second virial coefficients for helium based on a state-of-the art interatomic potential , 1991 .

[35]  T Sun,et al.  Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems , 1989 .

[36]  E. A. Mason,et al.  Equilibrium and Transport Properties of Eleven Polyatomic Gases At Low Density , 1987 .

[37]  P. M. Heertjes,et al.  Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor , 1974 .

[38]  N. Trappeniers,et al.  Selfdiffusion in gaseous and liquid methane , 1966 .

[39]  Shinji Takahashi,et al.  The Diffusion of Gases at High Pressures. I. The Self-diffusion Coefficient of Carbon Dioxide , 1966 .

[40]  Eugene E. Petersen,et al.  Diffusion in a pore of varying cross section , 1958 .

[41]  E. W. Thiele Relation between Catalytic Activity and Size of Particle , 1939 .

[42]  G. Hutchings,et al.  Product inhibition in the glycerol oxidation over Au/TiO 2 catalyst quantified by NMR relaxation , 2019 .

[43]  M. Bäumer,et al.  Universal Phenomena of CO Adsorption on Gold Surfaces with Low-Coordinated Sites , 2007 .

[44]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[45]  L. Gladden,et al.  The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Hydrogen bonding network disruption in nanoporous catalyst , 2022 .