Fast response dry-type artificial molecular muscles with [c2]daisy chains.

Hierarchically organized myosin and actin filaments found in biological systems exhibit contraction and expansion behaviours that produce work and force by consuming chemical energy. Inspired by these naturally occurring examples, we have developed photoresponsive wet- and dry-type molecular actuators built from rotaxane-based compounds known as [c2]daisy chains (specifically, [c2]AzoCD2 hydrogel and [c2]AzoCD2 xerogel). These actuators were prepared via polycondensation between four-armed poly(ethylene glycol) and a [c2]daisy chain based on α-cyclodextrin as the host component and azobenzene as a photoresponsive guest component. The light-induced actuation arises from the sliding motion of the [c2]daisy chain unit. Ultraviolet irradiation caused the gels to bend towards the light source. The response of the [c2]AzoCD2 xerogel, even under dry conditions, is very fast (7° every second), which is 10,800 times faster than the [c2]AzoCD2 hydrogel (7° every 3 h). In addition, the [c2]AzoCD2 xerogel was used as a crane arm to lift an object using ultraviolet irradiation to produce mechanical work.

[1]  Jean-Pierre Sauvage,et al.  Chemically induced contraction and stretching of a linear rotaxane dimer. , 2002, Chemistry.

[2]  Emilie Moulin,et al.  Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. , 2012, Angewandte Chemie.

[3]  J. F. Stoddart,et al.  Acid-base actuation of [c2]daisy chains. , 2009, Journal of the American Chemical Society.

[4]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[5]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins and the mechanism of organelle transport. , 1998, Science.

[6]  J. F. Stoddart,et al.  Great expectations: can artificial molecular machines deliver on their promise? , 2012, Chemical Society reviews.

[7]  A. Hashidzume,et al.  Light-switchable Janus [2]rotaxanes based on α-cyclodextrin derivatives bearing two recognition sites linked with oligo(ethylene glycol). , 2010, Chemistry, an Asian journal.

[8]  Akira Harada,et al.  Switching between supramolecular dimer and nonthreaded supramolecular self-assembly of stilbene amide-alpha-cyclodextrin by photoirradiation. , 2008, Journal of the American Chemical Society.

[9]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[10]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.

[11]  Robin H. Liu,et al.  Functional hydrogel structures for autonomous flow control inside microfluidic channels , 2000, Nature.

[12]  Tomiki Ikeda,et al.  Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films , 1995, Science.

[13]  Mounir Maaloum,et al.  Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. , 2015, Nature nanotechnology.

[14]  Akira Harada,et al.  Redox-generated mechanical motion of a supramolecular polymeric actuator based on host-guest interactions. , 2013, Angewandte Chemie.

[15]  J. Aizenberg,et al.  Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns , 2007, Science.

[16]  R. Grubbs,et al.  Switching and extension of a [c2]daisy-chain dimer polymer. , 2009, Journal of the American Chemical Society.

[17]  Susumu Tsuda,et al.  Linear oligomers composed of a photochromically contractible and extendable Janus [2]rotaxane. , 2006, Chemical communications.

[18]  S. Lincoln,et al.  The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin. , 2008, Chemical communications.

[19]  R. Vale,et al.  The way things move: looking under the hood of molecular motor proteins. , 2000, Science.

[20]  J. F. Stoddart,et al.  Supramolecular polymers: Molecular machines muscle up. , 2013, Nature nanotechnology.

[21]  B. Alberts,et al.  Molecular Biology of the Cell (4th Ed) , 2002 .

[22]  Lei Fang,et al.  An acid-base-controllable [c2]daisy chain. , 2008, Angewandte Chemie.

[23]  D. Broer,et al.  Printed artificial cilia from liquid-crystal network actuators modularly driven by light. , 2009, Nature materials.

[24]  G. Schill Catenanes, Rotaxanes, and Knots , 2013 .

[25]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[26]  Jean-Pierre Sauvage,et al.  Towards artificial muscles at the nanometric level. , 2003, Chemical communications.

[27]  Severin T. Schneebeli,et al.  Redox switchable daisy chain rotaxanes driven by radical-radical interactions. , 2014, Journal of the American Chemical Society.

[28]  Yanlei Yu,et al.  Photomechanics of Liquid-Crystalline Elastomers and Other Polymers , 2007 .

[29]  Severin T. Schneebeli,et al.  An electrochemically and thermally switchable donor-acceptor [c2]daisy chain rotaxane. , 2014, Angewandte Chemie.

[30]  J. F. Stoddart,et al.  Molecular machines muscle up A supramolecular polymer made of thousands of bistable (c2)daisy chains amplifies individual nanometric displacements up to the micrometre-length scale, in a concerted process reminiscent of muscular cells. , 2013 .

[31]  Kim,et al.  Nanotube nanotweezers , 1999, Science.

[32]  Y. Takashima,et al.  Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions , 2012, Nature Communications.

[33]  M. Mayor,et al.  Molecular Daisy Chains , 2013 .

[34]  C. Dietrich-Buchecker,et al.  Shuttles and muscles: linear molecular machines based on transition metals. , 2001, Accounts of chemical research.

[35]  Jean-Pierre Sauvage,et al.  Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .

[36]  T. Ikeda,et al.  Photomobile polymer materials: towards light-driven plastic motors. , 2008, Angewandte Chemie.

[37]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[38]  Andrew J. P. White,et al.  Supramolecular Daisy Chains. , 1998, Angewandte Chemie.

[39]  Frédéric Coutrot,et al.  A new pH-switchable dimannosyl[c2]daisy chain molecular machine. , 2008, Organic letters.

[40]  M. Shelley,et al.  Fast liquid-crystal elastomer swims into the dark , 2004, Nature materials.

[41]  P Kim,et al.  ナノチューブナノピンセット | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .

[42]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[43]  Y. Takashima,et al.  Contraction of supramolecular double-threaded dimer formed by alpha-cyclodextrin with a long alkyl chain. , 2007, Organic letters.

[44]  J. F. Stoddart,et al.  Rotaxane-based molecular muscles. , 2014, Accounts of chemical research.

[45]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[46]  F. Coutrot,et al.  Very contracted to extended co-conformations with or without oscillations in two- and three-station [c2]daisy chains. , 2010, The Journal of organic chemistry.

[47]  J. F. Stoddart,et al.  On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer , 2010 .

[48]  Y. Osada,et al.  A polymer gel with electrically driven motility , 1992, Nature.

[49]  Akira Harada,et al.  Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. , 2010, Angewandte Chemie.

[50]  G. Wallace,et al.  Use of Ionic Liquids for π-Conjugated Polymer Electrochemical Devices , 2002, Science.

[51]  J. Cornelissen,et al.  Conversion of light into macroscopic helical motion. , 2014, Nature chemistry.

[52]  T. Ikeda,et al.  Photomechanics: Directed bending of a polymer film by light , 2003, Nature.

[53]  Luis Moroder,et al.  Single-Molecule Optomechanical Cycle , 2002, Science.

[54]  Feihe Huang,et al.  A solvent-driven molecular spring , 2012 .