Global scale coupling of pyromes and fire regimes

[1]  J. Keeley,et al.  Evolutionary Ecology of Fire , 2022, Annual Review of Ecology, Evolution, and Systematics.

[2]  J. Pausas Pyrogeography across the western Palaearctic: A diversity of fire regimes , 2022, Global Ecology and Biogeography.

[3]  Adam L. Mahood,et al.  Modern Pyromes: Biogeographical Patterns of Fire Characteristics across the Contiguous United States , 2022, Fire.

[4]  Y. Yamagata,et al.  Gridded GDP Projections Compatible With the Five SSPs (Shared Socioeconomic Pathways) , 2021, Frontiers in Built Environment.

[5]  M. Rodrigues,et al.  Economic drivers of global fire activity: A critical review using the DPSIR framework , 2021 .

[6]  M. Cochrane,et al.  Manage fire regimes, not fires , 2021, Nature Geoscience.

[7]  B. Cechet,et al.  Validation of MODIS and AVHRR Fire Detections in Australia , 2021, International Journal of Geoinformatics.

[8]  J. Keeley,et al.  Wildfires and global change , 2021, Frontiers in Ecology and the Environment.

[9]  Priscilla N. Kelly Maternal IgE activates fetal mast cells , 2020 .

[10]  M. Rodrigues,et al.  Fire regime dynamics in mainland Spain. Part 1: Drivers of change , 2020 .

[11]  S. Goetz,et al.  Focus on changing fire regimes: interactions with climate, ecosystems, and society , 2020, Environmental Research Letters.

[12]  J. San-Miguel-Ayanz,et al.  A global wildfire dataset for the analysis of fire regimes and fire behaviour , 2019, Scientific Data.

[13]  D. Roy,et al.  Global validation of the collection 6 MODIS burned area product , 2019, Remote sensing of environment.

[14]  D. Kelley,et al.  How contemporary bioclimatic and human controls change global fire regimes , 2019, Nature Climate Change.

[15]  N. Koutsias,et al.  Historical background and current developments for mapping burned area from satellite Earth observation , 2019, Remote Sensing of Environment.

[16]  J. Randerson,et al.  The Global Fire Atlas of individual fire size, duration, speed and direction , 2018, Earth System Science Data.

[17]  P. Ciais,et al.  Varying relationships between fire radiative power and fire size at a global scale , 2019, Biogeosciences.

[18]  D. Roy,et al.  The Collection 6 MODIS burned area mapping algorithm and product , 2018, Remote sensing of environment.

[19]  W. Cascio Wildland fire smoke and human health. , 2018, The Science of the total environment.

[20]  V. Arora,et al.  Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land , 2018, Nature Communications.

[21]  R. B. Jackson,et al.  Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity , 2017, Nature.

[22]  Barry Gardiner,et al.  Forest biodiversity, ecosystem functioning and the provision of ecosystem services , 2017, Biodiversity and Conservation.

[23]  J. Pereira,et al.  Bimodal fire regimes unveil a global‐scale anthropogenic fingerprint , 2017 .

[24]  J. Randerson,et al.  A human-driven decline in global burned area , 2017, Science.

[25]  Wolfgang Knorr,et al.  Demographic controls of future global fire risk , 2016 .

[26]  Shiliang Su,et al.  Socioeconomic drivers of forest loss and fragmentation: A comparison between different land use planning schemes and policy implications , 2016 .

[27]  Cristina Santín,et al.  Global trends in wildfire and its impacts: perceptions versus realities in a changing world , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  Michael Brauer,et al.  Critical Review of Health Impacts of Wildfire Smoke Exposure , 2016, Environmental health perspectives.

[29]  Grant J. Williamson,et al.  Climate-induced variations in global wildfire danger from 1979 to 2013 , 2015, Nature Communications.

[30]  A. Wijaya,et al.  Tools for Assessing the Impacts of Climate Variability and Change on Wildfire Regimes in Forests , 2015 .

[31]  Nittaya Kerdprasop,et al.  The Clustering Validity with Silhouette and Sum of Squared Errors , 2015 .

[32]  Krishna Vadrevu,et al.  Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains. , 2015, Journal of environmental management.

[33]  J. Pereira,et al.  Causal relationships versus emergent patterns in the global controls of fire frequency , 2014 .

[34]  J. Goldammer,et al.  Pyrogeography and the Global Quest for Sustainable Fire Management , 2013 .

[35]  R. Bradstock,et al.  Defining pyromes and global syndromes of fire regimes , 2013, Proceedings of the National Academy of Sciences.

[36]  A. Budden,et al.  Big data and the future of ecology , 2013 .

[37]  J. Randerson,et al.  Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4) , 2013 .

[38]  S. Levin,et al.  Evolution of human-driven fire regimes in Africa , 2011, Proceedings of the National Academy of Sciences.

[39]  Christopher I. Roos,et al.  The human dimension of fire regimes on Earth , 2011, Journal of biogeography.

[40]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[41]  Ronald P. Neilson,et al.  Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. , 2010 .

[42]  Stefano Mazzoleni,et al.  Fire regime: history and definition of a key concept in disturbance ecology , 2010, Theory in Biosciences.

[43]  Cathy Whitlock,et al.  Paleoecological Perspectives on Fire Ecology: Revisiting the Fire-Regime Concept~!2009-09-02~!2009-11-09~!2010-03-05~! , 2010 .

[44]  Brian R. Miranda,et al.  Simulating dynamic and mixed-severity fire regimes: A process-based fire extension for LANDIS-II , 2009 .

[45]  Christopher I. Roos,et al.  Fire in the Earth System , 2009, Science.

[46]  M. Moritz,et al.  Global Pyrogeography: the Current and Future Distribution of Wildfire , 2009, PloS one.

[47]  C. Justice,et al.  Global characterization of fire activity: toward defining fire regimes from Earth observation data , 2008 .

[48]  Scott D. Peckham,et al.  Fire as the dominant driver of central Canadian boreal forest carbon balance , 2007, Nature.

[49]  Susan I. Stewart,et al.  Human influence on California fire regimes. , 2007, Ecological applications : a publication of the Ecological Society of America.

[50]  David J. Lohman,et al.  The Burning Issue , 2007, Science.

[51]  Heike Knicker,et al.  How does fire affect the nature and stability of soil organic nitrogen and carbon? A review , 2007 .

[52]  D. Falk Process-centred restoration in a fire-adapted ponderosa pine forest , 2006 .

[53]  A. Scott,et al.  The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Marco E. Morais,et al.  Wildfires, complexity, and highly optimized tolerance. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Bowman,et al.  Wildfire Smoke, Fire Management, and Human Health , 2005, EcoHealth.

[56]  M. Cochrane Fire science for rainforests , 2003, Nature.

[57]  Benjamin Kerr,et al.  Genetic niche‐hiking: an alternative explanation for the evolution of flammability , 2002 .

[58]  E. Dwyer,et al.  Global spatial and temporal distribution of vegetation fire as determined from satellite observations , 2000 .

[59]  D. Nepstad,et al.  Positive feedbacks in the fire dynamic of closed canopy tropical forests , 1999, Science.

[60]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.

[61]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[62]  Emilio Chuvieco,et al.  Development of a consistent global long-term burned area product (1982-2018) based on AVHRR-LTDR data , 2021, Int. J. Appl. Earth Obs. Geoinformation.

[63]  S. Page,et al.  Global vulnerability of peatlands to fire and carbon loss , 2015 .

[64]  Juli G. Pausas,et al.  Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime , 2011, Climatic Change.