Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH.

[1]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[2]  R. Kobayashi,et al.  Molecular cloning of CDK7-associated human MAT1, a cyclin-dependent kinase-activating kinase (CAK) assembly factor. , 1995, Cancer research.

[3]  S. Buratowski,et al.  An interaction between the Tfb1 and Ssl1 subunits of yeast TFIIH correlates with DNA repair activity. , 1995, Nucleic acids research.

[4]  N. Iyer,et al.  Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. , 1996, Biochemistry.

[5]  J. Egly,et al.  Substrate specificity of the cdk‐activating kinase (CAK) is altered upon association with TFIIH , 1997, The EMBO journal.

[6]  N. Segil,et al.  The Cyclin-dependent Kinase-activating Kinase (CAK) Assembly Factor, MAT1, Targets and Enhances CAK Activity on the POU Domains of Octamer Transcription Factors* , 1997, The Journal of Biological Chemistry.

[7]  C. Rodolfo,et al.  Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH , 1998, Nature Genetics.

[8]  R. Conaway,et al.  A Role for the TFIIH XPB DNA Helicase in Promoter Escape by RNA Polymerase II* , 1999, The Journal of Biological Chemistry.

[9]  F. Tirode,et al.  Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. , 1999, Molecular cell.

[10]  O. Gileadi,et al.  Distinct Regions of MAT1 Regulate cdk7 Kinase and TFIIH Transcription Activities* , 2000, The Journal of Biological Chemistry.

[11]  D. Moras,et al.  Molecular Structure of Human TFIIH , 2000, Cell.

[12]  Wei-Hau Chang,et al.  Electron Crystal Structure of the Transcription Factor and DNA Repair Complex, Core TFIIH , 2000, Cell.

[13]  J. Egly,et al.  A Yeast Four-hybrid System Identifies Cdk-activating Kinase as a Regulator of the XPD Helicase, a Subunit of Transcription Factor IIH* , 2001, The Journal of Biological Chemistry.

[14]  D. Moras,et al.  Dissecting the interaction network of multiprotein complexes by pairwise coexpression of subunits in E. coli. , 2001, Journal of molecular biology.

[15]  R. Hynes,et al.  Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. , 2002, Molecular biology of the cell.

[16]  V. Lamour,et al.  p52 Mediates XPB Function within the Transcription/Repair Factor TFIIH* 210 , 2002, The Journal of Biological Chemistry.

[17]  P. Bork,et al.  BSD: a novel domain in transcription factors and synapse-associated proteins. , 2002, Trends in biochemical sciences.

[18]  B. Van Houten,et al.  Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. , 2003, Molecular cell.

[19]  R. Aebersold,et al.  A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A , 2004, Nature Genetics.

[20]  V. Lamour,et al.  TFIIH contains a PH domain involved in DNA nucleotide excision repair , 2004, Nature Structural &Molecular Biology.

[21]  R. Aebersold,et al.  Identification of TFB5, a new component of general transcription and DNA repair factor IIH , 2004, Nature Genetics.

[22]  Olivier Poch,et al.  Domain architecture of the p62 subunit from the human transcription/repair factor TFIIH deduced by limited proteolysis and mass spectrometry analysis. , 2004, Biochemistry.

[23]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[24]  Nikolas P. Galatsanos,et al.  An Analytic Distance Metric for Gaussian Mixture Models with Application in Image Retrieval , 2005, ICANN.

[25]  E. Kellenberger,et al.  Solution Structure of the C-terminal Domain of TFIIH P44 Subunit Reveals a Novel Type of C4C4 Ring Domain Involved in Protein-Protein Interactions* , 2005, Journal of Biological Chemistry.

[26]  A. Sali,et al.  Statistical potential for assessment and prediction of protein structures , 2006, Protein science : a publication of the Protein Society.

[27]  P. Vineis,et al.  Human Genome Epidemiology (huge) Review Xrcc3 and Xpd/ercc2 Single Nucleotide Polymorphisms and the Risk of Cancer: a Huge Review , 2022 .

[28]  J. Egly,et al.  p8/TTD-A as a repair-specific TFIIH subunit. , 2006, Molecular cell.

[29]  T. Springer Complement and the multifaceted functions of VWA and integrin I domains. , 2006, Structure.

[30]  J. Tainer,et al.  Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. , 2006, Molecular cell.

[31]  C. Chiang,et al.  The General Transcription Machinery and General Cofactors , 2006, Critical reviews in biochemistry and molecular biology.

[32]  B. Chait,et al.  Determining the architectures of macromolecular assemblies , 2007, Nature.

[33]  J. Egly,et al.  Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. , 2007, Molecular cell.

[34]  J. Egly,et al.  DNA Repair and Transcriptional Deficiencies Caused by Mutations in the Drosophila p52 Subunit of TFIIH Generate Developmental Defects and Chromosome Fragility , 2007, Molecular and Cellular Biology.

[35]  J. Tainer,et al.  Supplemental Experimental Procedures Cloning and Recombinant Protein Production , 2022 .

[36]  J. Omichinski,et al.  p53 and TFIIEα share a common binding site on the Tfb1/p62 subunit of TFIIH , 2008, Proceedings of the National Academy of Sciences.

[37]  J. Egly,et al.  Structural basis for group A trichothiodystrophy , 2008, Nature Structural &Molecular Biology.

[38]  J. Omichinski,et al.  p53 and TFIIEalpha share a common binding site on the Tfb1/p62 subunit of TFIIH. , 2008, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Fan Wang,et al.  DNA Repair Gene XPD Polymorphisms and Cancer Risk: A Meta-analysis Based on 56 Case-Control Studies , 2008, Cancer Epidemiology Biomarkers & Prevention.

[40]  T. Kawabata Multiple Subunit Fitting into a Low-Resolution Density Map of a Macromolecular Complex Using a Gaussian Mixture Model , 2008, Biophysical journal.

[41]  J. Egly,et al.  p8/TTDA Overexpression Enhances UV-Irradiation Resistance and Suppresses TFIIH Mutations in a Drosophila Trichothiodystrophy Model , 2008, PLoS genetics.

[42]  Y. Nishimura,et al.  Structural insight into the TFIIE–TFIIH interaction: TFIIE and p53 share the binding region on TFIIH , 2008, The EMBO journal.

[43]  J. Egly,et al.  Molecular insights into the recruitment of TFIIH to sites of DNA damage , 2009, The EMBO journal.

[44]  GradUate StUdieS,et al.  MOLECULAR AND CELLULAR BIOLOGY , 2009, Molecular and Cellular Biology.

[45]  L. Selth,et al.  Interacting partners of the Tfb2 subunit from yeast TFIIH. , 2010, DNA repair.

[46]  Ben M. Webb,et al.  Integrative Structure Modeling of Macromolecular Assemblies from Proteomics Data* , 2010, Molecular & Cellular Proteomics.

[47]  B. Kieffer,et al.  Structure determination of the minimal complex between Tfb5 and Tfb2, two subunits of the yeast transcription/DNA-repair factor TFIIH: a retrospective study. , 2010, Acta crystallographica. Section D, Biological crystallography.

[48]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[49]  J. Tainer,et al.  XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. , 2011, DNA repair.

[50]  T. Mäkelä,et al.  Requirement of TFIIH kinase subunit Mat1 for RNA Pol II C-terminal domain Ser5 phosphorylation, transcription and mRNA turnover , 2011, Nucleic acids research.

[51]  M. Dong,et al.  Identification of cross-linked peptides from complex samples , 2012, Nature Methods.

[52]  P. Tompa Intrinsically disordered proteins: a 10-year recap. , 2012, Trends in biochemical sciences.

[53]  R. Kornberg,et al.  Tfb6, a previously unidentified subunit of the general transcription factor TFIIH, facilitates dissociation of Ssl2 helicase after transcription initiation , 2012, Proceedings of the National Academy of Sciences.

[54]  S. Hahn,et al.  Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening , 2012, Nature Structural &Molecular Biology.

[55]  D. Bushnell,et al.  Subunit architecture of general transcription factor TFIIH , 2012, Proceedings of the National Academy of Sciences.

[56]  Ben M. Webb,et al.  Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies , 2012, PLoS biology.

[57]  Jian Peng,et al.  Template-based protein structure modeling using the RaptorX web server , 2012, Nature Protocols.

[58]  J. Egly,et al.  TFIIH: when transcription met DNA repair , 2012, Nature Reviews Molecular Cell Biology.

[59]  Chao Zhang,et al.  Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II , 2012, Nature Structural &Molecular Biology.

[60]  Michael Levitt,et al.  Architecture of an RNA Polymerase II Transcription Pre-Initiation Complex , 2013, Science.

[61]  J. Egly,et al.  ARCH domain of XPD, an anchoring platform for CAK that conditions TFIIH DNA repair and transcription activities , 2013, Proceedings of the National Academy of Sciences.

[62]  Steven Hahn,et al.  Structural insights into transcription initiation by RNA polymerase II. , 2013, Trends in biochemical sciences.

[63]  Yuan He,et al.  Structural visualization of key steps in human transcription initiation , 2013, Nature.

[64]  J. Thompson,et al.  Functional insights into the core-TFIIH from a comparative survey. , 2013, Genomics.

[65]  M. Paulsson,et al.  A Structure of a Collagen VI VWA Domain Displays N and C Termini at Opposite Sides of the Protein , 2014, Structure.

[66]  J. Ranish,et al.  Architecture of the S. cerevisiae RNA polymerase I Core Factor complex , 2014, Nature Structural &Molecular Biology.

[67]  D. Eick,et al.  The structure and substrate specificity of human Cdk12/Cyclin K , 2014, Nature Communications.

[68]  Seung Joong Kim,et al.  Molecular Architecture and Function of the SEA Complex, a Modulator of the TORC1 Pathway* , 2014, Molecular & Cellular Proteomics.

[69]  C. Kisker,et al.  The Structure of the TFIIH p34 Subunit Reveals a Von Willebrand Factor A Like Fold , 2014, PloS one.

[70]  A. Engelman,et al.  Structural basis for nuclear import of splicing factors by human Transportin 3 , 2014, Proceedings of the National Academy of Sciences.

[71]  Steven J. Rysavy,et al.  Distance restraints from crosslinking mass spectrometry: Mining a molecular dynamics simulation database to evaluate lysine–lysine distances , 2014, Protein science : a publication of the Protein Society.