Br‐Doped Li4Ti5O12 and Composite TiO2 Anodes for Li‐ion Batteries: Synchrotron X‐Ray and in situ Neutron Diffraction Studies
暂无分享,去创建一个
Neeraj Sharma | Vanessa K. Peterson | Zaiping Guo | V. K. Peterson | N. Sharma | Zaiping Guo | G. Du | Dianzeng Jia | J. Kimpton | Dianzeng Jia | Guodong Du | Justin A. Kimpton | V. Peterson
[1] M. Armand,et al. Issues and challenges facing rechargeable lithium batteries , 2001, Nature.
[2] M. Hagen,et al. WOMBAT: The High Intensity Powder Diffractometer at the OPAL Reactor , 2006 .
[3] J. Tarascon,et al. In SituStructural Study of 4V-Range Lithium Extraction/Insertion in Fluorine-Substituted LiMn2O4 , 1999 .
[4] J. Tarascon,et al. Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .
[5] P. Strobel,et al. Composition–Valence Diagrams: A New Representation of Topotactic Reactions in Ternary Transition Metal Oxide Systems. Application to Lithium Intercalation , 1996 .
[6] L. Nazar,et al. Nano-network electronic conduction in iron and nickel olivine phosphates , 2004, Nature materials.
[7] K. Nikolowski,et al. Design and performance of an electrochemical in-situ cell for high resolution full-pattern X-ray powder diffraction , 2005 .
[8] C. Howard,et al. Structural and thermal parameters for rutile and anatase , 1991 .
[9] J. Goodenough. Challenges for Rechargeable Li Batteries , 2010 .
[10] Yang-Kook Sun,et al. Nanostructured Anode Material for High‐Power Battery System in Electric Vehicles , 2010, Advanced materials.
[11] H. Berg,et al. The LiMn2O4 to λ-MnO2 phase transition studied by in situ neutron diffraction , 2001 .
[12] Smith,et al. Neutron powder-diffraction studies of lithium, sodium, and potassium metal. , 1989, Physical review. B, Condensed matter.
[13] K. Wallwork,et al. The High Resolution Powder Diffraction Beamline for the Australian Synchrotron , 2007 .
[14] Jun Liu,et al. Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2 , 2008 .
[15] A. Deschanvres,et al. Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0 ⩽ x ⩽ 0, 333 , 1971 .
[16] D. Richard,et al. Analysis and Visualisation of Neutron-Scattering Data , 1996 .
[17] L. Kavan,et al. Rocking Chair Lithium Battery Based on Nanocrystalline TiO2 (Anatase) , 1995 .
[18] Kristina Edström,et al. A neutron diffraction cell for studying lithium-insertion processes in electrode materials , 1998 .
[19] M. Wagemaker,et al. A Kinetic Two‐Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12 , 2006 .
[20] Petr Novák,et al. In situ neutron diffraction study of Li insertion in Li4Ti5O12 , 2010 .
[21] Brian H. Toby,et al. EXPGUI, a graphical user interface for GSAS , 2001 .
[22] M. Wakihara. Recent developments in lithium ion batteries , 2001 .
[23] Zaiping Guo,et al. Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials , 2009 .
[24] Petr Novák,et al. Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .