Br‐Doped Li4Ti5O12 and Composite TiO2 Anodes for Li‐ion Batteries: Synchrotron X‐Ray and in situ Neutron Diffraction Studies

Synchrotron X-ray diffraction data were used to determine the phase purity and re-evaluate the crystal-structure of Li4Ti5O12-xBrx electrode materials (where the synthetic chemical inputs are x = 0.05, 0.10 0.20, 0.30). A maximum of x′ = 0.12 Br, where x′ is the Rietveld-refined value, can be substituted into the crystal structure with at least 2% rutile TiO2 forming as a second phase. Higher Br concentrations induced the formation of a third, presumably Br-rich, phase. These materials function as composite anodes that contain mixtures of TiO2, Li4Ti5O12-xBrx, and a Br-rich third, unknown, phase. The minor quantities of the secondary phases in combination with Li4Ti5O12-xBrx where x′ ∼ 0.1 were found to correspond to the optimum in electrochemical properties, while larger quantities of the secondary phases contributed to the degradation of the performance. In situ neutron diffraction of a composite anatase TiO2/Li4Ti5O12 anode within a custom-built battery was used to determine the electrochemical function of the TiO2 component. The Li4Ti5O12 component was found to be electrochemically active at lower voltages (1.5 V) relative to TiO2 (1.7 V). This enabled Li insertion/extraction to be tuned through the choice of voltage range in both components of this composite or in the anatase TiO2 phase only. The use of composite materials may facilitate the development of multi-component electrodes where different active materials can be cycled in order to tune power output.

[1]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[2]  M. Hagen,et al.  WOMBAT: The High Intensity Powder Diffractometer at the OPAL Reactor , 2006 .

[3]  J. Tarascon,et al.  In SituStructural Study of 4V-Range Lithium Extraction/Insertion in Fluorine-Substituted LiMn2O4 , 1999 .

[4]  J. Tarascon,et al.  Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .

[5]  P. Strobel,et al.  Composition–Valence Diagrams: A New Representation of Topotactic Reactions in Ternary Transition Metal Oxide Systems. Application to Lithium Intercalation , 1996 .

[6]  L. Nazar,et al.  Nano-network electronic conduction in iron and nickel olivine phosphates , 2004, Nature materials.

[7]  K. Nikolowski,et al.  Design and performance of an electrochemical in-situ cell for high resolution full-pattern X-ray powder diffraction , 2005 .

[8]  C. Howard,et al.  Structural and thermal parameters for rutile and anatase , 1991 .

[9]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[10]  Yang-Kook Sun,et al.  Nanostructured Anode Material for High‐Power Battery System in Electric Vehicles , 2010, Advanced materials.

[11]  H. Berg,et al.  The LiMn2O4 to λ-MnO2 phase transition studied by in situ neutron diffraction , 2001 .

[12]  Smith,et al.  Neutron powder-diffraction studies of lithium, sodium, and potassium metal. , 1989, Physical review. B, Condensed matter.

[13]  K. Wallwork,et al.  The High Resolution Powder Diffraction Beamline for the Australian Synchrotron , 2007 .

[14]  Jun Liu,et al.  Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2 , 2008 .

[15]  A. Deschanvres,et al.  Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0 ⩽ x ⩽ 0, 333 , 1971 .

[16]  D. Richard,et al.  Analysis and Visualisation of Neutron-Scattering Data , 1996 .

[17]  L. Kavan,et al.  Rocking Chair Lithium Battery Based on Nanocrystalline TiO2 (Anatase) , 1995 .

[18]  Kristina Edström,et al.  A neutron diffraction cell for studying lithium-insertion processes in electrode materials , 1998 .

[19]  M. Wagemaker,et al.  A Kinetic Two‐Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12 , 2006 .

[20]  Petr Novák,et al.  In situ neutron diffraction study of Li insertion in Li4Ti5O12 , 2010 .

[21]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[22]  M. Wakihara Recent developments in lithium ion batteries , 2001 .

[23]  Zaiping Guo,et al.  Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials , 2009 .

[24]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .