Runtime revision of sanctions in normative multi-agent systems

To achieve system-level properties of a multiagent system, the behavior of individual agents should be controlled and coordinated. One way to control agents without limiting their autonomy is to enforce norms by means of sanctions. The dynamicity and unpredictability of the agents’ interactions in uncertain environments, however, make it hard for designers to specify norms that will guarantee the achievement of the system-level objectives in every operating context. In this paper, we propose a runtime mechanism for the automated revision of norms by altering their sanctions. We use a Bayesian Network to learn, from system execution data, the relationship between the obedience/violation of the norms and the achievement of the system-level objectives. By combining the knowledge acquired at runtime with an estimation of the preferences of rational agents, we devise heuristic strategies that automatically revise the sanctions of the enforced norms. We evaluate our heuristics using a traffic simulator and we show that our mechanism is able to quickly identify optimal revisions of the initially enforced norms.

[1]  John Thangarajah,et al.  Reasoning with agent preferences in normative multi-agent systems , 2014, AAMAS.

[2]  Michael P. Wellman,et al.  Explaining 'Explaining Away' , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Mehdi Dastani,et al.  Normative Multi-agent Programs and Their Logics , 2009, KRAMAS.

[4]  Johan van Benthem,et al.  Dynamic logic of preference upgrade , 2007, J. Appl. Non Class. Logics.

[5]  Aditya K. Ghose,et al.  BDI Agents with Objectives and Preferences , 2010, DALT.

[6]  Y. Sugiyama,et al.  Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam , 2008 .

[7]  Patrice Perny,et al.  Adaptive Elicitation of Preferences under Uncertainty in Sequential Decision Making Problems , 2017, IJCAI.

[8]  Mehdi Dastani,et al.  Practical Run-Time Norm Enforcement with Bounded Lookahead , 2015, AAMAS.

[9]  D. Hausman Preference, Value, Choice, and Welfare , 2011 .

[10]  Noah D. Goodman,et al.  Learning the Preferences of Ignorant, Inconsistent Agents , 2015, AAAI.

[11]  Aida Mustapha,et al.  Adjustable autonomy: a systematic literature review , 2017, Artificial Intelligence Review.

[12]  Li Chen,et al.  Survey of Preference Elicitation Methods , 2004 .

[13]  Sheila A. McIlraith,et al.  Planning with Qualitative Temporal Preferences , 2006, KR.

[14]  John Mylopoulos,et al.  Reasoning about agents and protocols via goals and commitments , 2010, AAMAS.

[15]  Guido Governatori,et al.  Changing legal systems: legal abrogations and annulments in Defeasible Logic , 2010, Log. J. IGPL.

[16]  Anind K. Dey,et al.  Fast Planning for Dynamic Preferences , 2008, ICAPS.

[17]  Yao-Hua Tan,et al.  Norm Contextualization , 2012, COIN@AAMAS.

[18]  Frank Dignum,et al.  Autonomy and Agent Deliberation , 2003, Agents and Computational Autonomy.

[19]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[20]  Mehdi Dastani,et al.  Norm-based mechanism design , 2016, Artif. Intell..

[21]  Mehdi Dastani,et al.  Reasoning about Normative Update , 2013, IJCAI.

[22]  Jordi Campos Miralles,et al.  Robust Regulation Adaptation in Multi-Agent Systems , 2013, TAAS.

[23]  Mehdi Dastani,et al.  Reasoning about Dynamic Normative Systems , 2014, JELIA.

[24]  Lin Padgham,et al.  Situational preferences for BDI plans , 2013, AAMAS.

[25]  Emiliano Lorini,et al.  Dynamic Context Logic , 2009, LORI.

[26]  Gauthier Picard,et al.  Engineering Societies in the Agents World X, 10th International Workshop, ESAW 2009, Utrecht, The Netherlands, November 18-20, 2009. Proceedings , 2009, ESAW.

[27]  Adnan Darwiche,et al.  Sensitivity Analysis in Bayesian Networks: From Single to Multiple Parameters , 2004, UAI.

[28]  Manuela M. Veloso,et al.  Learning dynamic preferences in multi-agent meeting scheduling , 2005, IEEE/WIC/ACM International Conference on Intelligent Agent Technology.

[29]  Mehdi Dastani,et al.  Reasoning under compliance assumptions in normative multiagent systems , 2012, AAMAS.

[30]  Javier Vázquez-Salceda,et al.  From human regulations to regulated software agents’ behavior , 2008, Artificial Intelligence and Law.

[31]  Kagan Tumer,et al.  Aligning social welfare and agent preferences to alleviate traffic congestion , 2008, AAMAS.

[32]  Emiliano Lorini,et al.  Norms in MAS: Definitions and Related Concepts , 2013, Normative Multi-Agent Systems.

[33]  Mehdi Dastani,et al.  Norm approximation for imperfect monitors , 2014, AAMAS.

[34]  James Harland,et al.  Preference-based reasoning in BDI agent systems , 2015, Autonomous Agents and Multi-Agent Systems.

[35]  Mehdi Dastani,et al.  Runtime Norm Revision Using Bayesian Networks , 2018, PRIMA.

[36]  Daniel Krajzewicz,et al.  Recent Development and Applications of SUMO - Simulation of Urban MObility , 2012 .

[37]  Koen V. Hindriks,et al.  Programming Organization-Aware Agents , 2009, ESAW.

[38]  Frank Dignum,et al.  Deliberative Normative Agents: Principles and Architecture , 1999, ATAL.

[39]  Catholijn M. Jonker,et al.  When Will Negotiation Agents Be Able to Represent Us? The Challenges and Opportunities for Autonomous Negotiators , 2017, IJCAI.

[40]  Barbara Messing,et al.  An Introduction to MultiAgent Systems , 2002, Künstliche Intell..

[41]  Haiqin Wang,et al.  Using Sensitivity Analysis for Selective Parameter Update in Bayesian Network Learning , 2002 .

[42]  Jorge A. Baier,et al.  On Domain-Independent Heuristics for Planning with Qualitative Preferences , 2007, AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning.

[43]  Sriraam Natarajan,et al.  Dynamic preferences in multi-criteria reinforcement learning , 2005, ICML.

[44]  Giulianella Coletti,et al.  Rationality principles for preferences on belief functions , 2015, Kybernetika.

[45]  Eugénio C. Oliveira,et al.  Adaptive Deterrence Sanctions in a Normative Framework , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[46]  Mehdi Dastani,et al.  Distributed Controllers for Norm Enforcement , 2016, ECAI.

[47]  P. Fishburn Axioms for Lexicographic Preferences , 1975 .

[48]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[49]  Aldo Franco Dragoni,et al.  Contextual Requirements Prioritization and Its Application to Smart Homes , 2017, AmI.

[50]  Michael P. Wellman Fundamental Concepts of Qualitative Probabilistic Networks , 1990, Artif. Intell..

[51]  Mehdi Dastani,et al.  Runtime Revision of Norms and Sanctions Based on Agent Preferences , 2019, BNAIC/BENELEARN.

[52]  Johan Kwisthout,et al.  Most probable explanations in Bayesian networks: Complexity and tractability , 2011, Int. J. Approx. Reason..

[53]  Christian Prehofer,et al.  Self-Adaptation Based on Big Data Analytics: A Model Problem and Tool , 2017, 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).

[54]  Wamberto Weber Vasconcelos,et al.  Normative conflict resolution in multi-agent systems , 2009, Autonomous Agents and Multi-Agent Systems.

[55]  Bastin Tony Roy Savarimuthu,et al.  A Bayesian Approach to Norm Identification , 2015, ECAI.

[56]  Mehdi Dastani,et al.  A Dynamic Logic of Norm Change , 2016, ECAI.

[57]  Craig Boutilier,et al.  Constraint-based optimization and utility elicitation using the minimax decision criterion , 2006, Artif. Intell..