Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges

Abstract The compilation of global Landsat data-sets and the ever-lowering costs of computing now make it feasible to monitor the Earth's land cover at Landsat resolutions of 30 m. In this article, we describe the methods to create global products of forest cover and cover change at Landsat resolutions. Nevertheless, there are many challenges in ensuring the creation of high-quality products. And we propose various ways in which the challenges can be overcome. Among the challenges are the need for atmospheric correction, incorrect calibration coefficients in some of the data-sets, the different phenologies between compilations, the need for terrain correction, the lack of consistent reference data for training and accuracy assessment, and the need for highly automated characterization and change detection. We propose and evaluate the creation and use of surface reflectance products, improved selection of scenes to reduce phenological differences, terrain illumination correction, automated training selection, and the use of information extraction procedures robust to errors in training data along with several other issues. At several stages we use Moderate Resolution Spectroradiometer data and products to assist our analysis. A global working prototype product of forest cover and forest cover change is included.

[1]  Christopher D. Elvidge,et al.  Relative radiometric normalization of Landsat Multispectral Scanner data using an automatic scattergram-controlled regression , 1998 .

[2]  S. Goward,et al.  Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States , 2009 .

[3]  C. Justice,et al.  Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation , 1997 .

[4]  S. Rinaldi,et al.  A theoretical approach to tourism sustainability , 2002 .

[5]  Christopher O. Justice,et al.  Land remote sensing and global environmental change : NASA's earth observing system and the science of ASTER and MODIS , 2011 .

[6]  Timo Tokola,et al.  Relative Calibration of Multitemporal Landsat Data for Forest Cover Change Detection , 1999 .

[7]  Carlos Torres-Verdín,et al.  Efficient Numerical Simulation of Axisymmetric Electromagnetic Induction Measurements Using a High-Order Generalized Extended Born Approximation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[8]  John R. G. Townshend,et al.  Strategies for monitoring tropical deforestation using satellite data , 2000 .

[9]  Chengquan Huang,et al.  Quality assessment of Landsat surface reflectance products using MODIS data , 2012, Comput. Geosci..

[10]  Gordon B. Stenhouse,et al.  Change detection and landscape structure mapping using remote sensing , 2002 .

[11]  Y. Kaufman,et al.  Passive remote sensing of tropospheric aerosol and atmospheric , 1997 .

[12]  Weifeng Liu,et al.  Adaptive and Learning Systems for Signal Processing, Communication, and Control , 2010 .

[13]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. , 2006, Applied optics.

[14]  J. Townshend,et al.  Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data , 2008, Proceedings of the National Academy of Sciences.

[15]  A. Mather,et al.  Global Forest Resources Assessment 2000 Main Report: FAO Forestry Paper 140, FAO, Rome, 2001, xxvii+479pp, price $40.00, ISBN 92 5 104642-5, ISSN 0258-6150 , 2003 .

[16]  Compton J. Tucker,et al.  Tropical deforestation in the Bolivian Amazon , 2000, SPIE Defense + Commercial Sensing.

[17]  J. Townshend,et al.  Rapid loss of Paraguay's Atlantic forest and the status of protected areas — A Landsat assessment , 2007 .

[18]  Eric Vermote,et al.  Atmospheric correction for the monitoring of land surfaces , 2008 .

[19]  Chad J. Shuey,et al.  Validating MODIS land surface reflectance and albedo products: methods and preliminary results , 2002 .

[20]  Christopher Justice,et al.  The impact of misregistration on change detection , 1992, IEEE Trans. Geosci. Remote. Sens..

[21]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[22]  R. Houghton,et al.  Carbon dioxide mitigation in forestry and wood industry. , 1998 .

[23]  Pol Coppin,et al.  Review ArticleDigital change detection methods in ecosystem monitoring: a review , 2004 .

[24]  Jeffrey G. Masek,et al.  Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005. , 2009 .

[25]  C. Jha,et al.  Digital change detection of forest conversion of a dry tropical Indian forest region , 1994 .

[26]  B. Markham,et al.  Forty-year calibrated record of earth-reflected radiance from Landsat: A review , 2012 .

[27]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[28]  C. Justice,et al.  Atmospheric correction of MODIS data in the visible to middle infrared: first results , 2002 .

[29]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .

[30]  Rattan Lal,et al.  Sustainable Management of Soil Resources in the Humid Tropics , 1995 .

[31]  Chengquan Huang,et al.  Automated masking of cloud and cloud shadow for forest change analysis using Landsat images , 2010 .

[32]  C. Justice,et al.  Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations , 1988 .

[33]  Steven I. Gordon,et al.  Utilizing LANDSAT imagery to monitor land-use change - A case study in Ohio , 1980 .

[34]  Steffen Fritz,et al.  Geo-Wiki.Org: The Use of Crowdsourcing to Improve Global Land Cover , 2009, Remote. Sens..

[35]  J. Townshend,et al.  Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Goward,et al.  Vegetation canopy PAR absorptance and NDVI: An assessment for ten tree species with the SAIL model , 1997 .

[37]  S. Goward,et al.  Visible-near infrared spectral reflectance of landscape components in western Oregon , 1994 .

[38]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[39]  D. Lu,et al.  Change detection techniques , 2004 .

[40]  J. Townshend,et al.  Global discrimination of land cover types from metrics derived from AVHRR pathfinder data , 1995 .

[41]  C. Justice,et al.  MAPPING TROPICAL DEFORESTATION IN CENTRAL AFRICA , 2005, Environmental monitoring and assessment.

[42]  R. Lunetta,et al.  A change detection experiment using vegetation indices. , 1998 .

[43]  Stephen V. Stehman,et al.  A Strategy for Estimating the Rates of Recent United States Land-Cover Changes , 2002 .

[44]  Lawrence E. Band,et al.  Effect of land surface representation on forest water and carbon budgets , 1993 .

[45]  J. Colwell Vegetation canopy reflectance , 1974 .

[46]  Anthony C. Janetos,et al.  Meeting the Goals of GOFC , 2012 .

[47]  J. Townshend,et al.  Towards an operational MODIS continuous field of percent tree cover algorithm: examples using AVHRR and MODIS data , 2002 .

[48]  Ashbindu Singh,et al.  Review Article Digital change detection techniques using remotely-sensed data , 1989 .

[49]  D. E. Harrison,et al.  Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update) , 2010 .

[50]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[51]  Richard R. Irish,et al.  Landsat 7 automatic cloud cover assessment , 2000, SPIE Defense + Commercial Sensing.

[52]  C. Tucker,et al.  Tropical Deforestation and Habitat Fragmentation in the Amazon: Satellite Data from 1978 to 1988 , 1993, Science.

[53]  J. Townshend,et al.  Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers , 1998 .

[54]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. , 2007, Applied optics.

[55]  John R. Townshend,et al.  A new global raster water mask at 250 m resolution , 2009, Int. J. Digit. Earth.

[56]  C. Justice,et al.  International Coordination of Satellite Land Observations: Integrated Observations of the Land , 2010 .

[57]  Chengquan Huang,et al.  Development of time series stacks of Landsat images for reconstructing forest disturbance history , 2009, Int. J. Digit. Earth.

[58]  V. Taylor,et al.  GLOBAL OBSERVATION OF FOREST COVER FINE RESOLUTION DATA AND PRODUCT DESIGN STRATEGY , 1998 .

[59]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[60]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[61]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[62]  C. Tucker,et al.  NASA’s Global Orthorectified Landsat Data Set , 2004 .

[63]  R. Dubayah Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data , 1992 .

[64]  S. Goetz,et al.  Radiometric rectification - Toward a common radiometric response among multidate, multisensor images , 1991 .

[65]  Paul M. Mather,et al.  Support vector machines for classification in remote sensing , 2005 .

[66]  M. Hansen,et al.  Quantification of global gross forest cover loss , 2010, Proceedings of the National Academy of Sciences.

[67]  Kuan Song,et al.  Improving automated detection of land cover change for large areas using Landsat data , 2005, International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005..

[68]  Gyanesh Chander,et al.  Landsat-5 TM reflective-band absolute radiometric calibration , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[69]  R. Houghton,et al.  Historic Role of Forests in the Global Carbon Cycle , 1998 .

[70]  Benjamin L Turner Land Change Science , 2004 .

[71]  Peter E. Thornton,et al.  A U.S. Carbon Cycle Science Plan , 2014 .

[72]  Chengquan Huang,et al.  Methodology to select phenologically suitable Landsat scenes for forest change detection , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[73]  R. Lunetta,et al.  Remote Sensing Change Detection: Environmental Monitoring Methods and Applications , 1999 .

[74]  Chengquan Huang,et al.  Use of a dark object concept and support vector machines to automate forest cover change analysis , 2008 .

[75]  Chengquan Huang,et al.  Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting , 2001, IEEE Trans. Geosci. Remote. Sens..

[76]  Kuan Song Tackling Uncertainties and Errors in the Satellite Monitoring of Forest Cover Change , 2010 .

[77]  Samuel N. Goward,et al.  Landsat 7's long-term acquisition plan — an innovative approach to building a global imagery archive , 2001 .

[78]  Vanessa Su Lee Goh,et al.  Adaptive and Learning Systems for Signal, Processing, Communications, and Control , 2009 .

[79]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[80]  Chengquan Huang,et al.  An assessment of global forest cover maps using regional higher-resolution reference data sets , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[81]  Deep Narayan Pandey Sustainability Science for Tropical Forests , 2002 .

[82]  D. Roy,et al.  Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States , 2010 .

[83]  Robert E. Wolfe,et al.  An illumination correction algorithm on Landsat-TM data , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[84]  C. Justice,et al.  Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005 , 2008 .

[85]  R. DeFries,et al.  Classification trees: an alternative to traditional land cover classifiers , 1996 .

[86]  W. Cohen,et al.  An efficient and accurate method for mapping forest clearcuts in the Pacific Northwest using Landsat imagery , 1998 .

[87]  Am Mudabeti,et al.  Remote sensing 1 , 2013 .