Association between KCNJ11 gene polymorphisms and risk of type 2 diabetes mellitus in East Asian populations: a meta-analysis in 42,573 individuals

[1]  Hai-Feng Zhang,et al.  Complement factor H Y402H gene polymorphism and coronary heart disease susceptibility: a meta-analysis , 2011, Molecular Biology Reports.

[2]  Lin He,et al.  Genetic diversity of the apolipoprotein E gene and diabetic nephropathy: a meta-analysis , 2011, Molecular Biology Reports.

[3]  J. Wu,et al.  KCNJ11 Lys23Glu and TCF7L2 rs290487(C/T) Polymorphisms Affect Therapeutic Efficacy of Repaglinide in Chinese Patients With Type 2 Diabetes , 2010, Clinical pharmacology and therapeutics.

[4]  L. Groop,et al.  Investigation of Type 2 Diabetes Risk Alleles Support CDKN2A/B, CDKAL1, and TCF7L2 As Susceptibility Genes in a Han Chinese Cohort , 2010, PloS one.

[5]  Cheng Hu,et al.  PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 Are Associated with Type 2 Diabetes in a Chinese Population , 2009, PloS one.

[6]  F. Wang,et al.  Effect of genetic variants in KCNJ11, ABCC8, PPARG and HNF4A loci on the susceptibility of type 2 diabetes in Chinese Han population. , 2009, Chinese medical journal.

[7]  I. Stefanidis,et al.  Endothelial nitric oxide synthase gene polymorphisms and diabetic nephropathy: A HuGE review and meta-analysis , 2009, Genetics in Medicine.

[8]  Yun Liu,et al.  The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population , 2009, Journal of Human Genetics.

[9]  F. Takeuchi,et al.  Confirmation of Multiple Risk Loci and Genetic Impacts by a Genome-Wide Association Study of Type 2 Diabetes in the Japanese Population , 2009, Diabetes.

[10]  J. Chan,et al.  Construction of a prediction model for type 2 diabetes mellitus in the Japanese population based on 11 genes with strong evidence of the association , 2009, Journal of Human Genetics.

[11]  K. Kohara,et al.  Replication Study of Candidate Genes Associated With Type 2 Diabetes Based On Genome-Wide Screening , 2009, Diabetes.

[12]  Tom R. Gaunt,et al.  American Journal of Epidemiology Practice of Epidemiology Hardy-weinberg Equilibrium Testing of Biological Ascertainment for Mendelian Randomization Studies , 2022 .

[13]  Mark I McCarthy,et al.  Type 2 diabetes: new genes, new understanding. , 2008, Trends in genetics : TIG.

[14]  Yusuke Nakamura,et al.  Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 With Susceptibility to Type 2 Diabetes in a Japanese Population , 2008, Diabetes.

[15]  M. Kubo,et al.  Impact of Kir6.2 E23K Polymorphism on the Development of Type 2 Diabetes in a General Japanese Population , 2007, Diabetes.

[16]  P. Froguel,et al.  Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population , 2007, Diabetologia.

[17]  H. Shiota,et al.  SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population , 2007, Journal of Human Genetics.

[18]  Marcia M. Nizzari,et al.  Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels , 2007, Science.

[19]  M. McCarthy,et al.  Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes , 2007, Science.

[20]  G. Abecasis,et al.  A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants , 2007, Science.

[21]  Y. M. Cho,et al.  Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population , 2007, Diabetic medicine : a journal of the British Diabetic Association.

[22]  D. Altshuler,et al.  Type 2 Diabetes–Associated Missense Polymorphisms KCNJ11 E23K and ABCC8 A1369S Influence Progression to Diabetes and Response to Interventions in the Diabetes Prevention Program , 2007, Diabetes.

[23]  M. Kanamori,et al.  Association Studies of Variants in the Genes Involved in Pancreatic β-Cell Function in Type 2 Diabetes in Japanese Subjects , 2006, Diabetes.

[24]  Xin-Hua Xiao,et al.  [Association analysis of 30 type 2 diabetes candidate genes in Chinese Han population]. , 2006, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae.

[25]  K. Chou,et al.  INFLUENCE OF TEMPERATURE AND PRESSURE ON THE KINETICS OF Mg-6mol%LaNi PREPARED BY HYDRIDING COMBUSTION SYNTHESIS , 2006 .

[26]  T. Hansen,et al.  Analysis of separate and combined effects of common variation in KCNJ11 and PPARG on risk of type 2 diabetes. , 2005, The Journal of clinical endocrinology and metabolism.

[27]  Chun Jiang,et al.  Single Nucleotide Polymorphisms in KATP Channels , 2005 .

[28]  F. Ashcroft,et al.  Functional analysis of a structural model of the ATP‐binding site of the KATP channel Kir6.2 subunit , 2005, The EMBO journal.

[29]  Nicholas J. Wareham,et al.  Genetic Factors in Type 2 Diabetes: The End of the Beginning? , 2005, Science.

[30]  M. Daly,et al.  Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. , 2004, Diabetes.

[31]  S. Wild,et al.  Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. , 2004, Diabetes care.

[32]  F. Ashcroft,et al.  Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. , 2004, The New England journal of medicine.

[33]  P. Light,et al.  Kir6.2 polymorphisms sensitize beta-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? , 2003, Diabetes.

[34]  Inês Barroso,et al.  Candidate Gene Association Study in Type 2 Diabetes Indicates a Role for Genes Involved in β-Cell Function as Well as Insulin Action , 2003, PLoS biology.

[35]  D. Altman,et al.  Measuring inconsistency in meta-analyses , 2003, BMJ : British Medical Journal.

[36]  T. Hansen,et al.  The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. , 2003, Diabetes.

[37]  M. McCarthy,et al.  Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. , 2003, Diabetes.

[38]  M. Schwanstecher,et al.  The common single nucleotide polymorphism E23K in K(IR)6.2 sensitizes pancreatic beta-cell ATP-sensitive potassium channels toward activation through nucleoside diphosphates. , 2002, Diabetes.

[39]  C. Nichols,et al.  The Role of NH2-terminal Positive Charges in the Activity of Inward Rectifier KATP Channels , 2002, The Journal of general physiology.

[40]  S. Thompson,et al.  Quantifying heterogeneity in a meta‐analysis , 2002, Statistics in medicine.

[41]  M. Schwanstecher,et al.  KIR6.2 Polymorphism Predisposes to Type 2 Diabetes by Inducing Overactivity of Pancreatic β-Cell ATP-Sensitive K+ Channels , 2002 .

[42]  Yuichiro Yamada,et al.  Genomic variation in pancreatic ion channel genes in Japanese type 2 diabetic patients , 2001, Diabetes/metabolism research and reviews.

[43]  S. Wiltshire,et al.  Association studies of variants in promoter and coding regions of beta‐cell ATP‐sensitive K‐channel genes SUR1 and Kir6.2 with Type 2 diabetes mellitus (UKPDS 53) , 2001, Diabetic medicine : a journal of the British Diabetic Association.

[44]  J. Ioannidis,et al.  Evolution of treatment effects over time: empirical insight from recursive cumulative metaanalyses. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S Duval,et al.  Trim and Fill: A Simple Funnel‐Plot–Based Method of Testing and Adjusting for Publication Bias in Meta‐Analysis , 2000, Biometrics.

[46]  I. Olkin,et al.  Meta-analysis of observational studies in epidemiology - A proposal for reporting , 2000 .

[47]  K. Kosaka,et al.  Heterogeneous relationship of early insulin response and fasting insulin level with development of non-insulin-dependent diabetes mellitus in non-diabetic Japanese subjects with or without obesity. , 1999, Diabetes research and clinical practice.

[48]  J. Bryan,et al.  Molecular biology of adenosine triphosphate-sensitive potassium channels. , 1999, Endocrine reviews.

[49]  M. Permutt,et al.  Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR ): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians , 1998, Diabetologia.

[50]  J. Ioannidis,et al.  Quantitative Synthesis in Systematic Reviews , 1997, Annals of Internal Medicine.

[51]  G. Smith,et al.  Bias in meta-analysis detected by a simple, graphical test , 1997, BMJ.

[52]  T. Hansen,et al.  Amino Acid Polymorphisms in the ATP-Regulatable Inward Rectifier Kir6.2 and Their Relationships to Glucose- and Tolbutamide-Induced Insulin Secretion, the Insulin Sensitivity Index, and NIDDM , 1997, Diabetes.

[53]  M. Permutt,et al.  Sequence Variants in the Pancreatic Islet β-Cell Inwardly Rectifying K+ Channel Kir6.2 (Bir) Gene: Identification and Lack of Role in Caucasian Patients with NIDDM , 1997, Diabetes.

[54]  F. Ashcroft,et al.  Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell ATP-sensitive K-channel: no association with NIDDM in white caucasian subjects or evidence of abnormal function when expressed in vitro , 1996, Diabetologia.

[55]  K. Polonsky,et al.  Rat inwardly rectifying potassium channel Kir6.2: cloning electrophysiological characterization, and decreased expression in pancreatic islets of male Zucker diabetic fatty rats. , 1996, Biochemical and biophysical research communications.

[56]  J. Inazawa,et al.  Reconstitution of IKATP: An Inward Rectifier Subunit Plus the Sulfonylurea Receptor , 1995, Science.

[57]  C. Begg,et al.  Operating characteristics of a rank correlation test for publication bias. , 1994, Biometrics.

[58]  T C Chalmers,et al.  Cumulative meta-analysis of therapeutic trials for myocardial infarction. , 1992, The New England journal of medicine.

[59]  T. Chalmers,et al.  A survey of clinical trials of antibiotic prophylaxis in colon surgery: evidence against further use of no-treatment controls. , 1981, The New England journal of medicine.

[60]  Jinkui Yang,et al.  Angiotensin-converting enzyme gene polymorphism is associated with type 2 diabetes: a meta-analysis , 2009, Molecular Biology Reports.

[61]  Zhang Zha-ru Association Analyses of KCNJ11 Gene Polymorphisms with Type 2 Diabetes Mellitus , 2008 .

[62]  Yusuke Nakamura,et al.  Association of CDKAL 1 , IGF 2 BP 2 , CDKN 2 A / B , HHEX , SLC 30 A 8 and KCNJ 11 with susceptibility to type 2 diabetes in a Japanese population , 2007 .

[63]  Z. Qing Study on the Experiments of KCNJ11 E23K Variant and Genetic Susceptibility in Type 2 Diabetes Mellitus , 2007 .

[64]  Chun Jiang,et al.  Single nucleotide polymorphisms in K(ATP) channels: muscular impact on type 2 diabetes. , 2005, Diabetes.

[65]  M. Permutt,et al.  An E23K single nucleotide polymorphism in the islet ATP-sensitive potassium channel gene (Kir6.2) contributes as much to the risk of Type II diabetes in Caucasians as the PPARγ Pro12Ala variant , 2002, Diabetologia.

[66]  M. Schwanstecher,et al.  K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. , 2002, Diabetes.

[67]  E S Lander,et al.  The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. , 2000, Nature genetics.

[68]  K. Kunjilwar,et al.  Toward understanding the assembly and structure of KATP channels. , 1998, Physiological reviews.

[69]  C H Schmid,et al.  Cumulative meta-analysis of clinical trials builds evidence for exemplary medical care. , 1995, Journal of clinical epidemiology.