A New Variational Framework for Multiview Surface Reconstruction

The creation of surfaces from overlapping images taken from different vantages is a hard and important problem in computer vision. Recent developments fall primarily into two categories: the use of dense matching to produce point clouds from which surfaces are built, and the construction of surfaces from images directly. This paper presents a new method for surface reconstruction falling in the second category. First, a strongly motivated variational framework is built from the ground up based on a limiting case of photo-consistency. The framework includes a powerful new edge preserving smoothness term and exploits the input images exhaustively, directly yielding high quality surfaces instead of dealing with issues (such as noise or misalignment) after the fact. Numeric solution is accomplished with a combination of Gauss-Newton descent and the finite element method, yielding deep convergence in few iterates. The method is fast, robust, very insensitive to view/scene configurations, and produces state-of-the-art results in the Middlebury evaluation.

[1]  H. Hirschmüller Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information , 2005, CVPR.

[2]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[3]  Roberto Cipolla,et al.  Multiview Photometric Stereo , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  J. P. Lewis Fast Normalized Cross-Correlation , 2010 .

[5]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[6]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[7]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[8]  Jiří Matas,et al.  Computer Vision - ECCV 2004 , 2004, Lecture Notes in Computer Science.

[9]  Jian Sun,et al.  Symmetric stereo matching for occlusion handling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[11]  J. Reddy,et al.  The Finite Element Method in Heat Transfer and Fluid Dynamics , 1994 .

[12]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  David W. Jacobs,et al.  Mesh saliency , 2005, SIGGRAPH 2005.

[15]  Radim Sára,et al.  A Weak Structure Model for Regular Pattern Recognition Applied to Facade Images , 2010, ACCV.

[16]  Jitendra Malik,et al.  Large displacement optical flow , 2009, CVPR.

[17]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[18]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[19]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[20]  Ron Goldman,et al.  Curvature formulas for implicit curves and surfaces , 2005, Comput. Aided Geom. Des..

[21]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[22]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[23]  Niklas Järvstråt,et al.  An appearance-based measure of surface defects , 2009 .

[24]  Frederik Schaffalitzky,et al.  How hard is 3-view triangulation really? , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[25]  Richard Szeliski,et al.  A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[26]  M. Garland,et al.  Fast Polygonal Approximation of Terrains and Height Fields , 1998 .

[27]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[28]  Shree K. Nayar,et al.  Generalization of Lambert's reflectance model , 1994, SIGGRAPH.

[29]  Andreas Geiger,et al.  Efficient Large-Scale Stereo Matching , 2010, ACCV.

[30]  Daniel Cremers,et al.  Continuous Global Optimization in Multiview 3D Reconstruction , 2007, EMMCVPR.

[31]  Qionghai Dai,et al.  Continuous depth estimation for multi-view stereo , 2009, CVPR.

[32]  Richard Szeliski,et al.  Shape Ambiguities in Structure From Motion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Zeev Farbman,et al.  Edge-preserving decompositions for multi-scale tone and detail manipulation , 2008, SIGGRAPH 2008.

[34]  Alexandru Tupan,et al.  Triangulation , 1997, Comput. Vis. Image Underst..

[35]  R. Hartley Triangulation, Computer Vision and Image Understanding , 1997 .

[36]  Joachim Weickert,et al.  Anisotropic Range Image Integration , 2012, DAGM/OAGM Symposium.

[37]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[38]  Jean-Philippe Pons,et al.  Towards high-resolution large-scale multi-view stereo , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.