Automatic Clustering Using a Synergy of Genetic Algorithm and Multi-objective Differential Evolution

This paper applies the Differential Evolution (DE) and Genetic Algorithm (GA) to the task of automatic fuzzy clustering in a Multi-objective Optimization (MO) framework. It compares the performance a hybrid of the GA and DE (GADE) algorithms over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions from each algorithm consists of a number of non-dominated solutions, from which the user can choose the most promising ones according to the problem specifications. A real-coded representation of the search variables, accommodating variable number of cluster centers, is used for GADE. The performance of GADE has also been contrasted to that of two most well-known schemes of MO.

[1]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[2]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Michael I. Posner,et al.  Cognition (2nd ed.). , 1987 .

[4]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[5]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[6]  Andries Petrus Engelbrecht,et al.  Differential evolution methods for unsupervised image classification , 2005, 2005 IEEE Congress on Evolutionary Computation.

[7]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[8]  Ujjwal Maulik,et al.  Multiobjective Genetic Clustering for Pixel Classification in Remote Sensing Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[10]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[11]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[12]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[13]  W. Ames Mathematics in Science and Engineering , 1999 .

[14]  Martin J. Oates,et al.  On the Assessment of Multiobjective Approaches to the Adaptive Distributed Database Management Problem , 2000, PPSN.

[15]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[16]  Z. Wang,et al.  Guest Editorial Foreword to the Special Issue on Intelligent Computation for Bioinformatics , 2008, IEEE Trans. Syst. Man Cybern. Part C.

[17]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[18]  A. Messac,et al.  Smart Pareto filter: obtaining a minimal representation of multiobjective design space , 2004 .

[19]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[20]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[21]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[22]  D. Botstein,et al.  The transcriptional program of sporulation in budding yeast. , 1998, Science.

[23]  Xiaodong Li,et al.  Solving Rotated Multi-objective Optimization Problems Using Differential Evolution , 2004, Australian Conference on Artificial Intelligence.

[24]  Hussein A. Abbass,et al.  The Pareto Differential Evolution Algorithm , 2002, Int. J. Artif. Intell. Tools.

[25]  Arthur C. Sanderson,et al.  Pareto-based multi-objective differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[26]  Xinghuo Yu,et al.  AI 2004: Advances in Artificial Intelligence, 17th Australian Joint Conference on Artificial Intelligence, Cairns, Australia, December 4-6, 2004, Proceedings , 2004, Australian Conference on Artificial Intelligence.

[27]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[28]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[29]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[30]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[31]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[32]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[33]  Hans-Peter Kriegel,et al.  Visualization Techniques for Mining Large Databases: A Comparison , 1996, IEEE Trans. Knowl. Data Eng..

[34]  Sandra Paterlini,et al.  Differential evolution and particle swarm optimisation in partitional clustering , 2006, Comput. Stat. Data Anal..

[35]  D. J. Newman,et al.  UCI Repository of Machine Learning Database , 1998 .