Effect of synthesis conditions on microstructure and multiferroic properties of magnetoelectric Ca2Bi4Ti3.5Mn1.5O18 solid solutions

[1]  Jinping Liang,et al.  Toward nanograined gadolinia doped ceria via two-step sintering at ultralow temperature and its electrical conductivity , 2019, Ceramics International.

[2]  Wangfeng Bai,et al.  Remarkable piezoelectric activity and high electrical resistivity in Cu/Nb co-doped Bi4Ti3O12 high temperature piezoelectric ceramics , 2019, Journal of the European Ceramic Society.

[3]  X. Dong,et al.  Enhanced piezoelectric properties and temperature stability of Bi4Ti3O12-based Aurivillius ceramics via W/Nb substitution , 2019, Journal of the European Ceramic Society.

[4]  Cheng-Sao Chen,et al.  Improved microstructure and ferroelectric properties in B-site Ti4+-substituted (Bi0.86Sm0.14)FeO3 polycrystalline ceramics , 2019, Materials Chemistry and Physics.

[5]  Zhiqun Lin,et al.  Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. , 2019, Chemical Society reviews.

[6]  P. Nayak,et al.  Investigation of temperature variant dielectric and conduction behaviour of strontium modified BaBi4Ti4O15 ceramic , 2019, Journal of Materials Science: Materials in Electronics.

[7]  D. Bochenek,et al.  Multiferroic Aurivillius-type Bi6Fe2−xMnxTi3O18 (0 ≤ x ≤ 1.5) ceramics with negative dielectric constant , 2018, Applied Physics A.

[8]  P. Gopalan,et al.  Structural, electrical, magnetic and magnetoelectric properties of Co-doped BaTiO3 multiferroic ceramics , 2018, Ceramics International.

[9]  A. Panwar,et al.  Significant improvement in morphological, dielectric, ferroelectric and piezoelectric characteristics of Ba0.9Sr0.1Ti0.9Zr0.1O3–BaNb2O6 nanocomposites , 2018, Journal of Materials Science: Materials in Electronics.

[10]  W. Ye,et al.  Multiferroic properties of Bi5Ti3FeO15 ceramics prepared by hot-pressing methods , 2018, Materials Letters.

[11]  Zhenxiang Cheng,et al.  Electric and magnetic properties of Aurivillius-phase compounds: Bi5Ti3XO15 (X = Cu, Mn, Ni, V) , 2018, Ceramics International.

[12]  Y. Yanase,et al.  Group-theoretical classification of multipole order: Emergent responses and candidate materials , 2018, Physical Review B.

[13]  C. Nan,et al.  Bi3.25La0.75Ti2.5Nb0.25(Fe0.5Co0.5)0.25O12, a single phase room temperature multiferroic , 2018 .

[14]  Yue Cao,et al.  (00l)-Facet-Exposed Planelike ABi2Nb2O9 (A = Ca, Sr, Ba) Powders with a Single-Crystal Grain for Enhancement of Photocatalytic Activity , 2018 .

[15]  Rohit Sharma,et al.  Effect of lattice defects on the structural and optical properties of Ni1 − XAgXO (where X = 0.0, 0.01, 0.03, 0.05, 0.10 and 0.15) nanoparticles , 2018 .

[16]  Alberto Moure,et al.  Review and Perspectives of Aurivillius Structures as a Lead-Free Piezoelectric System , 2018 .

[17]  Jing Yin,et al.  Molten-salt synthesis of Ba5−xSrxNb4O15 solid solutions and their enhanced humidity sensing properties , 2018 .

[18]  Bo Wu,et al.  High performance of La, Nd multi-rare earth doped Na 0.46 Li 0.04 Bi 2.5 Nb 2 O 9 high temperature piezoceramics at a new pseudo-MPB , 2018 .

[19]  Jinman Yang,et al.  Magnetic and ferroelectric properties of Aurivillius phase Bi7Fe3Ti3O21 and their doped films , 2017 .

[20]  J. Dzik,et al.  Magnetic properties and magnetoelectric coupling enhancement in Bi5Ti3FeO15 ceramics , 2017 .

[21]  Sunil Kumar,et al.  Sol–gel synthesis and characterization of a new four-layer K0.5Gd0.5Bi4Ti4O15 Aurivillius phase , 2017, Journal of Materials Science: Materials in Electronics.

[22]  X. Chen,et al.  Readdressing of Magnetoelectric Effect in Bulk BiFeO3 , 2017 .

[23]  P. Nordblad,et al.  Composition dependence of the multifunctional properties of Nd-doped Bi4Ti3O12 ceramics , 2017, Journal of Materials Science: Materials in Electronics.

[24]  F. Huang,et al.  Molten salt synthesis and magnetic anisotropy of multiferroic Bi4NdTi3Fe0.7Ni0.3O15 ceramics , 2017 .

[25]  Shengxiang Huang,et al.  Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics , 2017, Journal of Materials Science.

[26]  D. O′Hare,et al.  Time-resolved in situ powder X-ray diffraction reveals the mechanisms of molten salt synthesis. , 2016, Chemical communications.

[27]  A. Castro,et al.  A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity , 2016, Nature Communications.

[28]  Haijun Zhang,et al.  Preparation of lanthanum cerate powders via a simple molten salt route , 2016 .

[29]  Yun Liu,et al.  A New n = 4 Layered Ruddlesden-Popper Phase K(2.5)Bi(2.5)Ti4O13 Showing Stoichiometric Hydration. , 2016, Inorganic chemistry.

[30]  C. Venkateswaran,et al.  Multiferroicity in polar phase LiNbO3 at room temperature , 2015 .

[31]  F. Gao,et al.  Effects of molten salt content and reaction temperature on molten salt preparation of CaNaBi2Nb3O12 powder , 2015, Journal of Materials Science: Materials in Electronics.

[32]  Xuecang Geng,et al.  Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review. , 2015, Progress in materials science.

[33]  J. Chen,et al.  Effect of Eu, Ti co-doping on the structural and multiferroic properties of BiFeO3 ceramics , 2014 .

[34]  Vincent Garcia,et al.  Magnetoelectric Devices for Spintronics , 2014 .

[35]  Zhenxiang Cheng,et al.  Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film , 2014, Scientific Reports.

[36]  Wenli Song,et al.  Magnetic and dielectric properties of Aurivillius phase Bi6Fe2Ti3−2xNbxCoxO18 (0 ≤ x ≤ 0.4) , 2014 .

[37]  Rohit Singh,et al.  Use of Arrott plots to identify Néel temperature (TN) in metamagnetic Ni48Co6Mn26Al20 polycrystalline ribbons , 2013 .

[38]  R. Whatmore,et al.  Room temperature electromechanical and magnetic investigations of ferroelectric Aurivillius phase Bi5Ti3(FexMn1−x)O15 (x = 1 and 0.7) chemical solution deposited thin films , 2012 .

[39]  Liqiu Wang,et al.  Molten salt route of well dispersive barium titanate nanoparticles , 2012 .

[40]  A. Nugroho,et al.  Aurivillius phases of PbBi4Ti4O15 doped with Mn3+ synthesized by molten salt technique: Structure, dielectric, and magnetic properties , 2011 .

[41]  A. Matsuo,et al.  Magnetic study of SmCoAsO showing a ferromagnetic-antiferromagnetic transition , 2010 .

[42]  Y. Huang,et al.  Ferroelectric transition of Aurivillius compounds Bi5Ti3FeO15 and Bi6Ti3Fe2O18 , 2010 .

[43]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[44]  M. Bibes,et al.  Multiferroics: towards a magnetoelectric memory. , 2008, Nature materials.

[45]  Yongke Yan,et al.  Topochemical Synthesis of Plate‐Like Na0.5Bi0.5TiO3 from Aurivillius Precursor , 2008 .

[46]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[47]  Yongxiang Li,et al.  Anisotropic grain growth of Bi4Ti3O12 in molten salt fluxes , 2003 .

[48]  P. Lightfoot,et al.  Ferroelectric phase transitions in SrBi2Nb2O9 and Bi5Ti3FeO15: A powder neutron diffraction study , 2003 .

[49]  Frey Mh,et al.  GRAIN-SIZE EFFECT ON STRUCTURE AND PHASE TRANSFORMATIONS FOR BARIUM TITANATE , 1996 .