A single adaptive controller with one variable for synchronizing two identical time delay hyperchaotic Lorenz systems with mismatched parameters

Time delays are ubiquitous in real world and are often sources of complex behaviors of dynamical systems. This paper addresses the problem of parameter identification and synchronization of uncertain hyperchaotic time-delayed systems. Based on the Lyapunov stability theory and the adaptive control theory, a single adaptive controller with one variable for synchronizing two identical time-delay hyperchaotic Lorenz systems with mismatch parameters is proposed. The parameter update laws and sufficient conditions of the scheme are obtained for both linear feedback and adaptive control approaches. Numerical simulations are also given to show the effectiveness of the proposed method.

[1]  J. Kurths,et al.  Phase Synchronization of Chaotic Oscillators by External Driving , 1997 .

[2]  Mohammad Haeri,et al.  Modified impulsive synchronization of hyperchaotic systems , 2010 .

[3]  Guangming Wang,et al.  Stabilization and synchronization of Genesio–Tesi system via single variable feedback controller , 2010 .

[4]  Ma Jun,et al.  Control Chaos in Hindmarsh—Rose Neuron by Using Intermittent Feedback with One Variable , 2008 .

[5]  Haipeng Peng,et al.  Time-Delayed Feedback Control of Time-Delay Chaotic Systems , 2003, Int. J. Bifurc. Chaos.

[6]  Song Zheng,et al.  Adaptive modified function projective synchronization of hyperchaotic systems with unknown parameters , 2010 .

[7]  Wang Xing-Yuan,et al.  Hyperchaotic Lorenz system , 2007 .

[8]  V. J. Majd,et al.  Sliding mode control for uncertain new chaotic dynamical system , 2009 .

[9]  Thomas Erneux,et al.  Chaos and coherence in coupled lasers , 1997 .

[10]  Zhengzhi Han,et al.  Controlling and synchronizing chaotic Genesio system via nonlinear feedback control , 2003 .

[11]  Xing-yuan Wang,et al.  Adaptive control for synchronization of a four-dimensional chaotic system via a single variable , 2011 .

[12]  Dibakar Ghosh,et al.  Nonlinear observer-based impulsive synchronization in chaotic systems with multiple attractors , 2010 .

[13]  M. Mossa Al-sawalha,et al.  Adaptive anti-synchronization of chaotic systems with fully unknown parameters , 2010, Comput. Math. Appl..

[14]  Cristina Masoller,et al.  Different regimes of synchronization in nonidentical time-delayed maps , 2002, nlin/0203017.

[15]  Zuolei Wang,et al.  Adaptive Q–S synchronization of non-identical chaotic systems with unknown parameters , 2010 .

[16]  A. Kittel,et al.  Generalized synchronization of chaos in electronic circuit experiments , 1998, Physica D: Nonlinear Phenomena.

[17]  P. Saha,et al.  Multiple delay Rössler system—Bifurcation and chaos control , 2008 .

[18]  Leon O. Chua,et al.  Secure communication via chaotic parameter modulation , 1996 .

[19]  Catherine Lepers,et al.  Chaotic lag synchronization and pulse-induced transient chaos in lasers coupled by saturable absorber , 2002 .

[20]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[21]  Zuolei Wang Chaos synchronization of an energy resource system based on linear control , 2010 .

[22]  Grebogi,et al.  Communicating with chaos. , 1993, Physical review letters.

[23]  K. Bar-Eli,et al.  On the stability of coupled chemical oscillators , 1985 .

[24]  Carroll,et al.  Driving systems with chaotic signals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[25]  Laurent Larger,et al.  Transmission system using chaotic delays between lightwaves , 2003 .

[26]  Zhisheng Duan,et al.  Adaptive lag synchronization in coupled chaotic systems with unidirectional delay feedback , 2010 .

[27]  Jun Ma,et al.  Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system , 2011 .

[28]  Ju H. Park,et al.  A novel criterion for delayed feedback control of time-delay chaotic systems , 2005 .

[29]  Zhaosheng Feng,et al.  Synchronization transition in gap-junction-coupled leech neurons , 2008 .