Dissipative quantum metrology in manybody systems of identical particles

Estimation of physical parameters is essential in almost any part of science and technology. The enhancement of performance in this task (e.g. beating the standard classical shot-noise limit) using available physical resources is a major goal in metrology. Quantum metrology in closed systems has indicated that entanglement in such systems may be a useful resource. However, whether in open quantum systems such enhancements may still show up is not yet fully understood. Here, we consider a dissipative (open) quantum system of identical particles in which a parameter of the open dynamics itself is to be estimated. We employ a recently developed dissipative quantum metrology framework, and investigate whether the entanglement produced in the course of the dissipative dynamics may help the estimation task. Specifically, we show that, even in a Markovian dynamics in which states become less distinguishable in time, at small enough times the entanglement generated by the dynamics may offer some advantage over the classical shot-noise limit.

[1]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[2]  U. Marzolino,et al.  Sub-shot-noise quantum metrology with entangled identical particles , 2010, 1001.3313.

[3]  kisah ali bin abi thalib,et al.  A - N , 1956 .

[4]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[5]  M. Oberthaler,et al.  Nonlinear atom interferometer surpasses classical precision limit , 2010, Nature.

[6]  Fabio Benatti,et al.  Entanglement and squeezing with identical particles: ultracold atom quantum metrology , 2011 .

[7]  Yun Li,et al.  Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.

[8]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[9]  I. Bloch Ultracold quantum gases in optical lattices , 2005 .

[10]  GianCarlo Ghirardi,et al.  General criterion for the entanglement of two indistinguishable particles (10 pages) , 2004 .

[11]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[12]  D. W. Robinson,et al.  Operator Algebras and Quantum Statistical Mechanics: Equilibrium States. Models in Quantum Statistical Mechanics , 2003 .

[13]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[14]  Derek W. Robinson,et al.  C[*]- and W[*]-algebras symmetry groups decomposition of states , 1987 .

[15]  Lorenza Viola,et al.  A Generalization of Entanglement to Convex Operational Theories: Entanglement Relative to a Subspace of Observables , 2005 .

[16]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[17]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[18]  H. Narnhofer The role of transposition and CPT operation for entanglement , 2003 .

[19]  C. Helstrom Quantum detection and estimation theory , 1969 .

[20]  F. Benatti,et al.  Sub-shot noise sensitivities without entanglement , 2011, 1109.0206.

[21]  S. Lloyd,et al.  Quantum tensor product structures are observable induced. , 2003, Physical Review Letters.

[22]  M. Kus,et al.  Entanglement for multipartite systems of indistinguishable particles , 2010, 1012.0758.

[23]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[24]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[25]  Lorenza Viola,et al.  A subsystem-independent generalization of entanglement. , 2004, Physical review letters.

[26]  Fabio Benatti,et al.  Environment induced entanglement in Markovian dissipative dynamics. , 2003, Physical review letters.

[27]  A. P. Balachandran,et al.  Entanglement and particle identity: a unifying approach. , 2013, Physical review letters.

[28]  A. Buchleitner,et al.  Essential entanglement for atomic and molecular physics , 2010, 1012.3940.

[29]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[30]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[31]  J. Ignacio Cirac,et al.  Quantum correlations in two-fermion systems , 2001 .

[32]  D. Petz Quantum Information Theory and Quantum Statistics , 2007 .

[33]  P. Zanardi,et al.  Virtual quantum subsystems. , 2001, Physical review letters.

[34]  Gniewomir Sarbicki,et al.  Entanglement witnesses: construction, analysis and classification , 2014, 1402.2413.

[35]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[36]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[37]  C. Batty OPERATOR ALGEBRAS AND QUANTUM STATISTICAL MECHANICS 1: C*‐ and W*‐Algebras. Symmetry Groups. Decomposition of States. , 1981 .

[38]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[39]  H. Yuen,et al.  Review of 'Quantum Detection and Estimation Theory' (Helstrom, C. W.; 1976) , 1977, IEEE Transactions on Information Theory.

[40]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[41]  Luca Marinatto,et al.  Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis , 2001 .

[42]  M. Oberthaler,et al.  Squeezing and entanglement in a Bose–Einstein condensate , 2008, Nature.

[43]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[44]  U. Marzolino,et al.  Bipartite entanglement in systems of identical particles: The partial transposition criterion , 2012, 1202.2993.

[45]  Shunlong Luo,et al.  Quantum Fisher Information and Uncertainty Relations , 2000 .

[46]  Fabio Benatti,et al.  ENTANGLED IDENTICAL PARTICLES AND NOISE , 2011, 1107.5071.

[47]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.